Skip to main content
Log in

Enhanced photocatalytic performance of nanostructured TiO2 thin films through combined effects of polymer conjugation and Mo-doping

Journal of Materials Science Aims and scope Submit manuscript

Cite this article

Abstract

Mo-doped TiO2 [≤ 0.20 wt% Mo; ≤ 0.10 mol% (metal basis)] with conjugated polyvinyl alcohol (TiO2/C-PVA) composite thin films was prepared by sol–gel dip coating on polished fused SiO2 substrates, followed by annealing at 180 °C for 4 h. These conditions were sufficient for solid solubility, despite the unusually low annealing temperature. The annealed thin films consisted of homogeneously distributed individual and slightly agglomerated anatase grains in a continuous C-PVA matrix characterized by the carbon double bond formed upon conjugation. The films exhibited drying shrinkage cracks, which increased consistently in extent with increasing Mo-doping concentration, effectively increasing the number of exposed TiO2 particles. Mo addition enhanced anatase nucleation, recrystallization, and growth at lower doping concentrations (up to ≤ 0.10 wt%), thereby increasing crystallinity. However, increasing doping levels (> 0.10 wt%) appeared to exceed the solubility limit, resulting in supersaturation and significant lattice destabilization. Mo-doping also caused the Ti2p XPS peaks to shift to lower binding energies and the Mo3d peaks to shift to higher binding energies. These data are consistent with thermodynamically unstable Ti4+ → Ti3+ conversion and thermodynamically stable Mo5+ → Mo6+ conversion, which are interpreted in terms of intervalence charge transfer (IVCT), in which charge compensation is achieved through majority Ti4+ → Ti3+ reduction plus Mo5+ → Mo6+ oxidation. Ti3+ concentration also reflects a direct correlation with the Mo-doping concentration and resultant IVCT within the Mo solubility limit and a reverse effect upon supersaturation. There is a correlation with the Eg but this can be attributed to recrystallization rather than a semiconducting effect. No effect of midgap state formation from enhancement of the \( {\text{V}}_{\text{O}}^{ \cdot \cdot } \) concentration is expected because IVCT is a redox effect only and dissolution of Mo5+ or Mo6+ would generate Ti vacancies. The methylene blue dye degradation data exhibited the same trend but at a significant level (90.6% degradation), thus indicating that the mechanism dominating the photocatalytic performance is the recrystallization of the anatase and/or the modification of the semiconducting properties induced by Mo-doping, as indicated by the trends in band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. Macwan D, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46(11):3669–3686. https://doi.org/10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  2. Zhu J, Chen F, Zhang J, Chen H, Anpo M (2006) Fe3+–TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J Photochem Photobiol 180(1–2):196–204

    Article  CAS  Google Scholar 

  3. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  4. Ren H, Koshy P, Chen W-F, Qi S, Sorrell CC (2017) Photocatalytic materials and technologies for air purification. J Hazard Mater 325:340–366

    Article  CAS  Google Scholar 

  5. Sánchez B, Sánchez-Muñoz M, Muñoz-Vicente M, Cobas G, Portela R, Suárez S, González AE, Rodríguez N, Amils R (2012) Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions. Chemosphere 87(6):625–630

    Article  CAS  Google Scholar 

  6. Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28(5):934–938

    Article  CAS  Google Scholar 

  7. Yu JC, Ho W, Yu J, Yip H, Wong PK, Zhao J (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39(4):1175–1179

    Article  CAS  Google Scholar 

  8. Hanaor DA, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46(4):855–874

    Article  CAS  Google Scholar 

  9. Lin M-Z, Chen H, Chen W-F, Nakaruk A, Koshy P, Sorrell CC (2014) Effect of single-cation doping and codoping with Mn and Fe on the photocatalytic performance of TiO2 thin films. Int J Hydrog Energy 39(36):21500–21511

    Article  CAS  Google Scholar 

  10. Chen W-F, Mofarah SS, Hanaor DAH, Koshy P, Chen HK, Jiang Y, Sorrell CC (2018) Enhancement of Ce/Cr codopant solubility and chemical homogeneity in TiO2 nanoparticles through sol–gel versus pechini syntheses. Inorg Chem 57:7279–7289

    Article  CAS  Google Scholar 

  11. Chen W-F, Koshy P, Adler L, Sorrell CC (2017) Photocatalytic activity of V-doped TiO2 thin films for the degradation of methylene blue and rhodamine B dye solutions. J Aust Ceram Soc 53(2):569–576

    Article  CAS  Google Scholar 

  12. Chung L, Chen W-F, Koshy P, Sorrell CC (2017) Effect of Ce-doping on the photocatalytic performance of TiO2 thin films. Mater Chem Phys 197:236–239

    Article  CAS  Google Scholar 

  13. Chen W-F, Koshy P, Huang Y, Adabifiroozjaei E, Yao Y, Sorrell CC (2016) Effects of precipitation, liquid formation, and intervalence charge transfer on the properties and photocatalytic performance of cobalt-or vanadium-doped TiO2 thin films. Int J Hydrog Energy 41(42):19025–19056

    Article  CAS  Google Scholar 

  14. Chen H-K, Chen W-F, Koshy P, Adabifiroozjaei E, Liu R, Sheppard LR, Sorrell CC (2016) Effect of tungsten-doping on the properties and photocatalytic performance of titania thin films on glass substrates. J Taiwan Inst Chem Eng 67:202–210

    Article  CAS  Google Scholar 

  15. Chen W-F, Koshy P, Sorrell CC (2015) Effect of intervalence charge transfer on photocatalytic performance of cobalt-and vanadium-codoped TiO2 thin films. Int J Hydrog Energy 40(46):16215–16229

    Article  CAS  Google Scholar 

  16. Devi LG, Murthy BN (2008) Characterization of Mo doped TiO2 and its enhanced photocatalytic activity under visible light. Catal Lett 125(3–4):320–330

    Article  CAS  Google Scholar 

  17. Chen W-F, Chen H, Koshy P, Nakaruk A, Sorrell CC (2018) Effect of doping on the properties and photocatalytic performance of titania thin films on glass substrates: single-ion doping with Cobalt or Molybdenum. Mater Chem Phys 205:334–346

    Article  CAS  Google Scholar 

  18. Štengl V, Bakardjieva S (2010) Molybdenum-doped anatase and its extraordinary photocatalytic activity in the degradation of orange II in the UV and vis regions. J Phys Chem Lett 114(45):19308–19317

    Article  CAS  Google Scholar 

  19. Tan K, Zhang H, Xie C, Zheng H, Gu Y, Zhang W (2010) Visible-light absorption and photocatalytic activity in molybdenum-and nitrogen-codoped TiO2. Catal Commun 11(5):331–335

    Article  CAS  Google Scholar 

  20. Devi LG, Kumar SG, Murthy BN, Kottam N (2009) Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO2 lattice and its photo catalytic activity under solar illumination. Catal Commun 10(6):794–798

    Article  CAS  Google Scholar 

  21. Lin CP, Chen H, Nakaruk A, Koshy P, Sorrell CC (2013) Effect of annealing temperature on the photocatalytic activity of TiO2 thin films. Energy Procedia 34:627–636

    Article  CAS  Google Scholar 

  22. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48(2):487–493

    Article  CAS  Google Scholar 

  23. DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41(3):319–326

    Article  CAS  Google Scholar 

  24. Faure B, Salazar-Alvarez G, Ahniyaz A, Villaluenga I, Berriozabal G, De Miguel YR, Bergström L (2013) Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci Technol Adv Mater 14(2):023001

    Article  CAS  Google Scholar 

  25. Sun H, Cao Y, Feng L, Chen Y (2016) Immobilizing photogenerated electrons from graphitic carbon nitride for an improved visible-light photocatalytic activity. Sci Rep 6:22808

    Article  CAS  Google Scholar 

  26. Torres FG, Nazhat SN, Fadzullah SSM, Maquet V, Boccaccini AR (2007) Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds. Compos Sci Technol 67(6):1139–1147

    Article  CAS  Google Scholar 

  27. Cho S, Choi W (2001) Solid-phase photocatalytic degradation of PVC–TiO2 polymer composites. J Photochem Photobiol 143(2–3):221–228

    Article  CAS  Google Scholar 

  28. Langlet M, Kim A, Audier M, Herrmann JM (2002) Sol–gel preparation of photocatalytic TiO2 films on polymer substrates. J Sol-Gel Sci Technol 25(3):223–234

    Article  CAS  Google Scholar 

  29. Nakata K, Ochilai T, Murakami T, Fujishima A (2012) Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochim Acta 84:103–111

    Article  CAS  Google Scholar 

  30. Van Hal PA, Christiaans MP, Wienk MM, Kroon JM, Janssen RA (1999) Photoinduced electron transfer from conjugated polymers to TiO2. J Phys Chem B 103(21):4352–4359

    Article  Google Scholar 

  31. Li X, Wang D, Luo Q, An J, Wang Y, Cheng G (2008) Surface modification of titanium dioxide nanoparticles by polyaniline via an in situ method. J Chem Technol Biotechnol 83(11):1558–1564

    Article  CAS  Google Scholar 

  32. Wang Y, Zhong M, Chen F, Yang J (2009) Visible light photocatalytic activity of TiO2/D-PVA for MO degradation. Appl Catal B 90(1–2):249–254

    Article  CAS  Google Scholar 

  33. Kuang T, Fu D, Chang L, Yang Z, Yang J, Fan P, Zhong M, Chen F, Peng X (2016) Enhanced photocatalysis of yittium-doped TiO2/D-PVA composites: degradation of methyl orange (MO) and PVC film. Sci Adv Mater 8(6):1286–1292

    Article  CAS  Google Scholar 

  34. Nair PB, Justinvictor VB, Daniel GP, Joy K, Ramakrishnan V, Kumar DD, Thomas PV (2014) Structural, optical, photoluminescence and photocatalytic investigations on Fe doped TiO2 thin films. Thin Solid Films 550:121–127

    Article  CAS  Google Scholar 

  35. Cordischi D, Burriesci N, D’Alba F, Petrera M, Polizzotti G, Schiavello M (1985) Structural characterization of Fe/Ti oxide photocatalysts by X-ray, ESR, and Mössbauer methods. J Solid State Chem 56(2):182–190

    Article  CAS  Google Scholar 

  36. Shinde SR, Ogale SB, Sarma SD, Simpson JR, Drew HD, Lofland SE, Lanci C, Buban JP, Browning ND, Kulkarni VN, Higgins J (2003) Ferromagnetism in laser deposited anatase Ti1−x Cox O2−δ films. Phys Rev B 67(11):115211

    Article  CAS  Google Scholar 

  37. Tauc J, Menth A (1972) States in the gap. J Non-Cryst Solids 8:569–585

    Article  Google Scholar 

  38. Wold A (1993) Photocatalytic Properties of TiO2. Chem Mater 5(3):280–283

    Article  CAS  Google Scholar 

  39. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York

    Google Scholar 

  40. Alhomoudi IA, Newaz G (2009) Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films 517(15):4372–4378

    Article  CAS  Google Scholar 

  41. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767

    Article  Google Scholar 

  42. Song Y, Zhang J, Yang H, Jiang L, Dan Y, Le Rendu P, Nguyen TP (2016) Photocatalytic activity of TiO2 based composite films by porous conjugated polymer coating of nanoparticles. Mater Sci Semicond Process 42:54–57

    Article  CAS  Google Scholar 

  43. Hegedűs P, Szabó-Bárdos E, Horváth O, Szabó P, Horváth K (2017) Investigation of a TiO2 photocatalyst immobilized with poly (vinyl alcohol). Catal Today 284:179–186

    Article  CAS  Google Scholar 

  44. Yang H, Zhang J, Song Y, Xu S, Jiang L, Dan Y (2015) Visible light photo-catalytic activity of C-PVA/TiO2 composites for degrading rhodamine B. Appl Surf Sci 324:645–651

    Article  CAS  Google Scholar 

  45. Zhang J, Song Y, Yang H, Xu S, Jiang L, Dan Y (2013) TiO2/T-PVA composites immobilized on cordierite: structure and photocatalytic activity for degrading RhB Under visible light. Water Air Soil Pollut 224(7):1555

    Article  CAS  Google Scholar 

  46. Yu J, Zhao X, Zhao Q (2001) Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method. Mater Chem Phys 69(1–3):25–29

    Article  CAS  Google Scholar 

  47. Shirkhanzadeh M (1995) XRD and XPS characterization of superplastic TiO2 coatings prepared on Ti6Al4V surgical alloy by an electrochemical method. J Mater Sci Mater Med 6(4):206–210

    Article  CAS  Google Scholar 

  48. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A: Chem 161(1–2):205–212

    Article  CAS  Google Scholar 

  49. Wang S, Bai LN, Sun HM, Jiang Q, Lian JS (2013) Structure and photocatalytic property of Mo-doped TiO2 nanoparticles. Powder Technol 244:9–15

    Article  CAS  Google Scholar 

  50. Bevy LP (2005) New developments in catalysis research. Nova Publishers, New York

    Google Scholar 

  51. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray photoelectron spectroscopy database, NIST Standard Reference Database 20, Version 4.1., Washington: US Department of Commerce

  52. Chen W-F, Koshy P, Sorrell CC (2016) Effects of film topology and contamination as a function of thickness on the photo-induced hydrophilicity of transparent TiO2 thin films deposited on glass substrates by spin coating. J Mater Sci 51(5):2465–2480

    Article  CAS  Google Scholar 

  53. Spangler CW (1999) Recent development in the design of organic materials for optical power limiting. J Mater Chem 9(9):2013–2020

    Article  CAS  Google Scholar 

  54. Eufinger K, Poelman D, Poelman H, De Gryse R, Marin GB (2007) Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films. Appl Surf Sci 254(1):148–152

    Article  CAS  Google Scholar 

  55. Ren M, Frimmel FH, Abbt-Braun G (2015) Multi-cycle photocatalytic degradation of bezafibrate by a cast polyvinyl alcohol/titanium dioxide (PVA/TiO2) hybrid film. J Mol Catal A: Chem 400:42–48

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Australian Research Council (ARC) (DP140103954) and the characterization facilities provided by the Mark Wainwright Analytical Centre at UNSW Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Fan Chen.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Chen, WF., Koshy, P. et al. Enhanced photocatalytic performance of nanostructured TiO2 thin films through combined effects of polymer conjugation and Mo-doping. J Mater Sci 54, 5266–5279 (2019). https://doi.org/10.1007/s10853-018-03271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03271-0

Navigation