Improvements of high-field pinning properties of polycrystalline Fe(Se,Te) material by heat treatments

Abstract

We present the fabrication of FeSe0.5Te0.5 polycrystalline samples by self-flux method, showing the presence of the peak-effect in the vortex lattice configuration. To improve the performances at high magnetic fields for this iron-based superconductor of the 11-family, the two-step solid-state reaction process has been successfully modified by increasing the temperature of the heat treatment and by slowing down the cooling rate. The magnetic field-temperature phase diagram has been investigated by magneto-resistance, magnetization, and heat capacity measurements in applied magnetic fields up to 18 T. The magnetization curves exhibit an enhancement of the peak-effect whose position shifts by varying the temperature, following a similar dependence than that previously reported in high-temperature superconducting materials such as YBa2Cu3O7-δ. The presence of the peak-effect can be correlated to the sample manufacture, since by tuning a proper heat treatment it becomes observable ever more in the magnetic field-temperature phase diagram. This fabrication route paves the way to a systematic increase in the critical current density thus becoming relevant for applications.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1

    Tanabe K, Hosono H (2012) Frontiers on iron-based superconductors toward their application. Jpn J Appl Phys 51:010005

    Article  Google Scholar 

  2. 2

    Hosono H, Kuroki K (2015) Iron-based superconductors: current status of materials and pairing mechanism. Phys C Supercond Appl 514:399–422

    Article  Google Scholar 

  3. 3

    Putti M et al (2010) New Fe-based superconductors: properties relevant for applications. Supercond Sci Technol 23:034003

    Article  Google Scholar 

  4. 4

    Pallecchi I, Eisterer M, Malagoli A, Putti M (2015) Application potential of Fe-based superconductors. Supercond Sci Technol 28:114005

    Article  Google Scholar 

  5. 5

    Grimaldi G et al (2018) Angular dependence of vortex instability in a layered superconductor: the case study of Fe(Se, Te) material. Sci Rep 8:4150

    Article  Google Scholar 

  6. 6

    Xu Z, Yuan P, Ma Y, Cai C (2017) High performance FeSe0.5Te0.5 thin films fabricated on less-well-textured flexible coated conductor templates. Supercond Sci Technol 30:035003

    Article  Google Scholar 

  7. 7

    Hacisalihoglu MY, Yanmaz E (2013) Effect of substitution and heat treatment route on polycrystalline FeSe0.5Te0.5 superconductors. J Supercond Novel Magn 26:2369–2374

    Article  Google Scholar 

  8. 8

    Palenzona A et al (2012) A new approach for improving global critical current density in Fe(Se0.5Te0.5) polycrystalline materials. Supercond Sci Technol 25:115018

    Article  Google Scholar 

  9. 9

    Chen N, Liu Y, Ma Z, Yu L, Li H (2016) Improvement in structure and superconductivity of bulk FeSe0.5Te0.5 superconductors by optimizing sintering temperature. Scripta Mater 112:152–155

    Article  Google Scholar 

  10. 10

    Ma Y (2012) Progress in wire fabrication of iron-based superconductors. Supercond Sci Technol 25:113001

    Article  Google Scholar 

  11. 11

    Palombo M, Malagoli A, Pani M, Bernini C, Manfrinetti P, Palenzona A, Putti M (2015) Exploring the feasibility of Fe(Se,Te) conductors by ex situ powder-in-tube method. J Appl Phys 117:213903

    Article  Google Scholar 

  12. 12

    Polichetti M, Zola D, Luo J, Chen GF, Li Z, Wang NL, Noce C, Pace S (2012) Grain geometry effect on the magnetic properties of a granular iron-based superconductor LaFeAsO1−xFx. Supercond Sci Technol 25:025010

    Article  Google Scholar 

  13. 13

    Galluzzi A, Polichetti M, Buchkov K, Nazarova E, Mancusi D, Pace S (2015) Evaluation of the intragrain critical current density in a multidomain FeSe crystal by means of DC magnetic measurements. Supercond Sci Technol 28:115005

    Article  Google Scholar 

  14. 14

    Galluzzi A et al (2018) Evidence of pinning crossover and the role of twin boundaries in the peak effect in FeSeTe iron based superconductor. Supercond Sci Technol 31:015014

    Article  Google Scholar 

  15. 15

    Galluzzi A, Buchkov K, Tomov V, Nazarova E, Kovacheva D, Leo A, Grimaldi G, Pace S, Polichetti M (2018) Mixed state properties of iron based Fe(Se, Te) superconductor fabricated by Bridgman and self-flux methods. J Appl Phys 123:233904

    Article  Google Scholar 

  16. 16

    Zhou W et al (2016) Second magnetization peak effect, vortex dynamics, and flux pinning in 112-type superconductor Ca0.8La0.2Fe1-xCoxAs2. Sci Rep 6:22278

    Article  Google Scholar 

  17. 17

    Pippard AB (1969) A possible mechanism for the peak effect in type II superconductors. Phylos Mag 19:217

    Article  Google Scholar 

  18. 18

    Erb A, Genoud J-Y, Marti F, Daumling M, Walker E, Flukiger R (1996) Reversible suppression of the so-called fishtail effect in ultra pure single crystals of YBa2Cu3O7-δ achieved by proper oxygenation. J Low Temp Phys 105:1023

    Article  Google Scholar 

  19. 19

    Bonura M, Giannini E, Viennois R, Senatore C (2012) Temperature and time scaling of the peak-effect vortex configuration in FeTe0.7Se0.3. Phys Rev B 85:134532

    Article  Google Scholar 

  20. 20

    Prozorov R, Ni N, Tanatar MA, Kogan VG, Gordon RT, Martin C, Blomberg EC, Prommapan P, Yan JQ, Bud’ko SL, Canfield PC (2008) Vortex phase diagram of Ba(Fe0.93Co0.07)2As2 single crystals. Phys Rev B 78:224506

    Article  Google Scholar 

  21. 21

    Das P, Thakur AD, Yadav AK, Tomy CV, Lees, Balakrishnan G, Ramakrishan S, Grover AK (2011) Magnetization hysteresis and time decay measurements in FeSe0.50Te0.50: evidence for fluctuation in mean free path induced pinning. Phys Rev B 84:214526

    Article  Google Scholar 

  22. 22

    Fiamozzi Zignani C et al (2017) Fabrication and physical properties of polycrystalline iron-chalcogenides superconductors. IEEE Trans Appl Supercond 27:7300605

    Article  Google Scholar 

  23. 23

    Guler NK, Ekicibil A, Ozcelik B, Onar K, Yakinci E, Okazaki H, Takeya H, Takano Y (2014) The annealing effects in the iron-based superconductor FeTe0.8Se0.2 prepared by the self-flux method. J Supercond Nov Magn 27:2691–2697

    Article  Google Scholar 

  24. 24

    Fang MH, Pham HM, Qian B, Liu TJ, Vehstedt EK, Liu Y, Spinu L, Mao ZQ (2008) Superconductivity close to magnetic instability in Fe(Se1−xTex)0.82. Phys Rev B 78:224503

    Article  Google Scholar 

  25. 25

    Zhuang JC, Yeoh WK, Cui XY, Kim JH, Shi DQ, Shi ZX, Ringer SP, Wang XL, Dou SX (2014) Enhancement of transition temperature in FexSe0.5Te0.5 film via iron vacancies. Appl Phys Lett 104:262601

    Article  Google Scholar 

  26. 26

    Hamad RM, Kayed TS, Kunwar S, Elsayed KA, Abu-Ruz E, Ziq KhA (2018) Effects of iron contents on the vortex state in FexSe0.5Te0.5. J Supercond Nov Magn 31:1727–1732

    Article  Google Scholar 

  27. 27

    McQueen TM (2009) Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys Rev B 79:014522

    Article  Google Scholar 

  28. 28

    Viennois A, Giannini E, van der Marel D, Cerny R (2010) Effect of Fe excess on structural, magnetic and superconducting properties of single-crystalline Fe1+xTe1-ySey. J Solid State Chem 183:769–775

    Article  Google Scholar 

  29. 29

    Sales BC, Sefat AS, McGuire A, Jin RY, Mandrus D (2009) Bulk superconductivity at 14 K in single crystals of Fe1+yTexSe1−x. Phys Rev B 79:094521

    Article  Google Scholar 

  30. 30

    Liu Y, Lin CT (2011) A comparative study of Fe1+dTe1−xSex single crystals grown by Bridgman and self-flux techniques. J Supercond Nov Magn 24:183–187

    Article  Google Scholar 

  31. 31

    Okamoto H and Tanner L E 1990 Binary Alloy Phase Diagrams 2nd ed. edited by Massalski T B vol 2 (Materials Park Ohio: ASM International) pp 1781-83

  32. 32

    Farisogullari D, Guler NK, Yakinci K, Ekicibil A, Karadag F, Yakinci ME, Ozcelik B (2018) The cooling rate effect on structure and flux pinning force of FeTeSe single crystal deposited by self-flux method. J Mater Sci Mater Electron 29:6477–6483

    Article  Google Scholar 

  33. 33

    Masi A et al (2018) Phase separation and microstructure in superconducting FeSe1−xTex materials. IEEE Trans Appl Supercond 28:7300305

    Article  Google Scholar 

  34. 34

    Klein L, Yacoby ER, Yeshurun Y, Erb A, Müller-Vogt G, Breit V, Wühl H (1994) Peak effect and scaling of irreversible properties in untwinned Y-Ba-Cu-O crystals. Phys Rev B 49(6):4403

    Article  Google Scholar 

  35. 35

    Bean CSP (1964) Magnetization of high-field superconductors. Rev Mod Phys 36:31–39

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the PON Research and Competitiveness 2007-2013 under Grants PON Nafassy—PONa3_00007.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Grimaldi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiamozzi Zignani, C., De Marzi, G., Corato, V. et al. Improvements of high-field pinning properties of polycrystalline Fe(Se,Te) material by heat treatments. J Mater Sci 54, 5092–5100 (2019). https://doi.org/10.1007/s10853-018-03218-5

Download citation