Journal of Materials Science

, Volume 54, Issue 6, pp 4671–4679 | Cite as

Aligned Fe microfiber reinforced epoxy composites with tunable electromagnetic properties and improved microwave absorption

  • Yuchang QingEmail author
  • Hanyi Nan
  • Hongyao Jia
  • Dandan Min
  • Wancheng Zhou
  • Fa Luo


Aligned Fe microfiber/epoxy composites (FMF/EP) were prepared by shear force. The effects of the alignment on the morphology, electromagnetic properties and microwave absorption performances were studied. The results showed that the FMF inclines to be aligned uniformly after alignment treatment. The aligned FMF/EP composite exhibits higher complex permeability and lower complex permittivity in the measured frequency range (2–18 GHz), which is beneficial to impedance matching and enhancing absorption performance. Lower reflection loss (RL) intensity and wider absorption bandwidth were obtained after FMF orientation, and an absorption width is 13.3 GHz from 4.7 to 18 GHz with RL below − 5 dB at thickness 1.6 mm, which indicated that the orientation plays a significant role in improving absorption performance. This work provides an effective approach for the preparation of microwave-absorbing materials with good absorption properties.



This work was financially supported by National Natural Science Foundation of China (No. 51402239), Fundamental Research Funds for the Central Universities (No. 3102017ZY050), and State Key Laboratory of Solidification Processing (NWPU) China (Grant No. KP201604).


  1. 1.
    Qing Y, Min D, Zhou Y, Luo F, Zhou W (2015) Graphene nanosheet- and flake carbonyl iron particle-filled epoxy–silicone composites as thin-thickness and wide-bandwidth microwave absorber. Carbon 86:98–107CrossRefGoogle Scholar
  2. 2.
    Fang J, Chen Z, Wei W, Li Y, Liu T, Liu Z, Yue X, Jiang Z (2015) A carbon fiber based three-phase heterostructure composite CF/Co0.2Fe2.8O4/PANI as an efficient electromagnetic wave absorber in the Ku band. RSC Adv 5:50024–50032CrossRefGoogle Scholar
  3. 3.
    Xu H, Bie S, Jiang J, Yuan W, Chen Q, Xu Y (2016) Electromagnetic and microwave absorbing properties of the composites containing flaky FeSiAl powders mixed with MnO2 in 1–18 GHz. J Magn Magn Mater 401:567–571CrossRefGoogle Scholar
  4. 4.
    Qing Y, Zhou W, Luo F, Zhu D (2013) Effect of magnetic fillers on the electromagnetic properties of CaCu3Ti4O12-epoxy composites within the 2–18 GHz range. J Mater Chem C 1:536–541CrossRefGoogle Scholar
  5. 5.
    Zhang Z, Wei J, Yang W, Qiao L, Wang T, Li F (2011) Effect of shape of Sendust particles on their electromagnetic properties within 0.1–18 GHz range. Phys B 406:3896–3900CrossRefGoogle Scholar
  6. 6.
    Korolev K, McCloy J, Mo Afsar (2012) Ferromagnetic resonance of micro- and nano-sized hexagonal ferrite powders at millimeter waves. J Appl Phys 111:07E113CrossRefGoogle Scholar
  7. 7.
    Rozanov K, Li Z, Chen L, Koledintseva M (2005) Microwave permeability of Co2Z composites. J Appl Phys 97:013905CrossRefGoogle Scholar
  8. 8.
    Neige J, Lepetit T, Adenot-Engelvin A, Malléjac N, Thiaville A, Vukadinovic N (2013) Microwave permeability of FeNiMo flakes-polymer composites with and without an applied static magnetic field. IEEE Trans Magn 49:1005–1008CrossRefGoogle Scholar
  9. 9.
    Duan Y, Gu S, Zhang Z, Wen M (2012) Characterization of structures and novel magnetic response of Fe87.5Si7Al5.5 alloy processed by ball milling. J Alloys Compd 542:90–96CrossRefGoogle Scholar
  10. 10.
    Tan G, Zhang Y, Qiao L, Wang T, Wang J, Li F (2015) High-frequency electromagnetic properties of soft magnetic Y2Fe17Nx particles with easy-plane anisotropy. Phys B 477:52–55CrossRefGoogle Scholar
  11. 11.
    Xu W, Wu C, Yan M (2015) Preparation of Fe–SiNi soft magnetic composites with excellent high-frequency properties. J Magn Magn Mater 381:116–119CrossRefGoogle Scholar
  12. 12.
    Duan Y, Wu G, Gu S, Li S, Ma G (2012) Study on microwave absorbing properties of carbonyl-iron composite coating based on PVC and Al sheet. Appl Surf Sci 258:5746–5752CrossRefGoogle Scholar
  13. 13.
    Park K, Han J, Lee S, Kim J, Yi J, Lee S (2009) Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and nife particles. Compos Sci Technol 69:1271–1278CrossRefGoogle Scholar
  14. 14.
    Min D, Zhou W, Luo F, Zhu D (2017) Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe3O4 composite. J Magn Magn Mater 435:26–32CrossRefGoogle Scholar
  15. 15.
    Zhou C, Fang Q, Yan F, Wang W, Wu K, Liu Y et al (2012) Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material. J Magn Magn Mater 324:1720–1725CrossRefGoogle Scholar
  16. 16.
    Li J, Peng X, Yang Y, Ge H (2017) Preparation and characterization of MnZn/FeSiAl soft magnetic composites. J Magn Magn Mater 426:132–136CrossRefGoogle Scholar
  17. 17.
    Li R, Wang T, Tan G, Zuo W, Wei J, Qiao L, Li F (2014) Microwave absorption properties of oriented Pr2Fe17N3-δ particles/paraffin composite with planar anisotropy. J Alloys Compd 586:239–243CrossRefGoogle Scholar
  18. 18.
    Wei J, Wang T, Li F (2011) Effect of shape of Fe3Al particles on their microwave permeability and absorption properties. J Magn Magn Mater 323:2608–2612CrossRefGoogle Scholar
  19. 19.
    Min D, Zhou W, Qing Y, Luo F, Zhu D (2017) Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field. J Mater Sci 52:2373–2383. CrossRefGoogle Scholar
  20. 20.
    Han R, Yi H, Zuo W, Wang T, Qiao L, Li F (2012) Greatly enhanced permeability for planar anisotropy Ce2Fe17N3-δ compound with rotational orientation in various external magnetic fields. J Magn Magn Mater 324:2488–2491CrossRefGoogle Scholar
  21. 21.
    Yang W, Qiao L, Wei J, Zhang Z, Wang T, Li F (2010) Microwave permeability of flake-shaped FeCuNbSiB particle composite with rotational orientation. J Appl Phys 107:033913CrossRefGoogle Scholar
  22. 22.
    Pramanik P, Khastgir D, De S, Saha T (1990) Pressure-sensitive electrically conductive nitrile rubber composites filled with particulate carbon black and short carbon fiber. J Mater Sci 25:3848–3853. CrossRefGoogle Scholar
  23. 23.
    Taya M, Ueda N (1987) Prediction of the in-plane electrical conductivity of a misoriented short fiber composite: fiber percolation model versus effective medium theory. J Eng Mater Technol 109:252–255CrossRefGoogle Scholar
  24. 24.
    Min D, Zhou W, Qing Y, Luo F, Zhu D (2017) Enhanced microwave absorption properties of oriented carbonyl iron/carbon black composite induced by shear force. J Electron Mater 46:4903–4911CrossRefGoogle Scholar
  25. 25.
    Boncel S, Górka J, Shaffer M, Koziol K (2014) Shear-induced crystallization of molten isotactic polypropylene within the intertube channels of aligned multi-wall carbon nanotube arrays towards structurally controlled composites. Mater Lett 116:53–56CrossRefGoogle Scholar
  26. 26.
    Chu Z, Cheng H, Zhou Y, Wang Q, Wang J (2010) Anisotropic microwave absorbing properties of oriented SiC short fiber sheets. Mater Des 31:3140–3145CrossRefGoogle Scholar
  27. 27.
    Wu M, He H, Zhao Z, Yao X (2011) Electromagnetic anisotropy of magnetic iron fibers at microwave frequencies. J Phys D Appl Phys 34:1069–1074CrossRefGoogle Scholar
  28. 28.
    Wu M, He H, Zhao Z, Yao X (2000) Electromagnetic and microwave absorbing properties of iron fibre-epoxy resin composites. J Phys D Appl Phys 33:2398–2401CrossRefGoogle Scholar
  29. 29.
    Lu J, Weng W, Chen X, Wun D, Wu C, Chen G (2015) Piezoresistive materials from directed shear-induced assembly of graphite nanosheets in polyethylene. Adv Funct Mater 15:1358–1363CrossRefGoogle Scholar
  30. 30.
    Song W, Cao M, Lu M, Liu J, Yuan J, Fan L (2013) Improved dielectric properties and highly efficient and broadened bandwidth electromagnetic attenuation of thickness-decreased carbon nanosheet/wax composites. J Mater Chem C 1:1846–1854CrossRefGoogle Scholar
  31. 31.
    Ning M, Lu M, Li J, Chen Z, Dou Y, Wang C, Rehman F, Cao M, Jin H (2015) Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 7:15734–15740CrossRefGoogle Scholar
  32. 32.
    Qing Y, Zhou W, Jia S, Luo F, Zhu D (2010) Dielectric properties of carbon black and carbonyl iron filled epoxy–silicone resin coating. J Mater Sci 45:1885–1888. CrossRefGoogle Scholar
  33. 33.
    Zhang C, Jiang J, Bie S, Zhang L, Miao L, Xu X (2012) Electromagnetic and microwave absorption properties of surface modified Fe–Si–Al flakes with nylon. J Alloys Compd 527:71–75CrossRefGoogle Scholar
  34. 34.
    Han R, Qiao L, Wang T, Li F (2011) Microwave complex permeability of planar anisotropy carbonyl-iron particles. J Alloys Compd 509:2734–2737CrossRefGoogle Scholar
  35. 35.
    Matsumoto M, Miyata Y (1997) Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal particles. IEEE Trans Magn 33:4459–4464CrossRefGoogle Scholar
  36. 36.
    Han R, Gong L, Wang T, Qiao L, Li F (2012) Complex permeability and microwave absorbing properties of planar anisotropy carbonyl iron/Ni0.5Zn0.5Fe2O4 composite in quasimicrowave band. Mater Chem Phys 131:555–560CrossRefGoogle Scholar
  37. 37.
    Park K, Han J, Lee S, Kim J, Yi J, Lee S (2009) Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles. Compos SCI Thechnol 69:1271–1278CrossRefGoogle Scholar
  38. 38.
    Wei J, Wang J, Liu Q, Qiao L, Wang T, Li F (2010) Enhanced microwave absorption properties of Fe3Al/Al2O3 fine particle composites. J Phys D 43:1150Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations