Journal of Materials Science

, Volume 53, Issue 9, pp 6763–6773 | Cite as

High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha

  • Xiao Liu
  • Huanlei Wang
  • Yongpeng Cui
  • Xiaonan Xu
  • Hao Zhang
  • Gaofei Lu
  • Jing Shi
  • Wei Liu
  • Shougang Chen
  • Xin Wang
Energy materials


A sodium-ion capacitor is created with excellent energy and power performances. All the positive and negative electrodes are fabricated by Enteromorpha-derived hierarchical porous carbon (EDHPC). The high specific surface area with hierarchical porosity, dilated graphitic layer with high edge defects, and rich heteroatom doping of EDHPC ensures reversible sodium storage and facile ion transport as sodium-ion battery anode. By tuning the potential of the positive and negative electrodes, both electrodes achieve the equal capacity, which allows the electrochemical performance of the assembled sodium-ion capacitor to be greatly improved and optimized. The assembled sodium-ion capacitor has a maximum energy density of 84 Wh kg−1, while maintaining 42 Wh kg−1 at a high power of 9053 W kg−1. The optimized sodium-ion capacitor can retain 67% of its capacity after 5000 cycles. This work gives a general strategy for designing high-performance sodium-ion capacitors for low-cost and large-scale production.



The authors acknowledge financial support from National Natural Science Foundation of China (Nos. 21471139 and 51402272), Seed Fund from Ocean University of China (No. 841412005), Shandong Province Outstanding Youth Scientist Foundation Plan (No. BS2014CL024), and Fundamental Research Funds for the Central Universities (No. 841562011).

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

Supplementary material

10853_2017_1982_MOESM1_ESM.doc (974 kb)
Supplementary material 1 (DOC 974 kb)


  1. 1.
    Kang KS, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980CrossRefGoogle Scholar
  2. 2.
    Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  3. 3.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  4. 4.
    Wang F, Wang X, Chang Z et al (2015) A quasi-solid-state sodium-ion capacitor with high energy density. Adv Mater 27:6962–6968CrossRefGoogle Scholar
  5. 5.
    Qu Y, Deng Y, Li Q et al (2016) Core–shell-structured hollow carbon nanofiber@ nitrogen-doped porous carbon composite materials as anodes for advanced sodium-ion batteries. J Mater Sci 52:2356–2365. CrossRefGoogle Scholar
  6. 6.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211CrossRefGoogle Scholar
  7. 7.
    Cai M, Sun X, Chen W et al (2017) Performance of lithium-ion capacitors using prelithiated multiwalled carbon nanotubes/graphite composite as negative electrode. J Mater Sci 53:749–758. CrossRefGoogle Scholar
  8. 8.
    Le Z, Liu F, Nie P et al (2017) Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11:2952–2960CrossRefGoogle Scholar
  9. 9.
    Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647CrossRefGoogle Scholar
  10. 10.
    Weng Z, Li F, Wang DW, Wen L, Cheng HM (2013) Controlled electrochemical charge injection to maximize the energy density of supercapacitors. Angew Chem 52:3722–3725CrossRefGoogle Scholar
  11. 11.
    Xu X, Cui Y, Shi J et al (2017) Sorghum core-derived carbon sheets as electrodes for a lithium-ion capacitor. RSC Adv 7:17178–17183CrossRefGoogle Scholar
  12. 12.
    Dong S, Shen L, Li H et al (2015) Pseudocapacitive behaviours of Na2Ti3O7 @ CNT coaxial nanocables for high-performance sodiumion capacitors. J Mater Chem A 3:21277–21283CrossRefGoogle Scholar
  13. 13.
    Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279CrossRefGoogle Scholar
  14. 14.
    Liu Y, Chen F, Ye W et al (2017) High-performance oxygen reduction electrocatalyst derived from polydopamine and cobalt supported on carbon nanotubes for metal–air batteries. Adv Funct Mater 27:1606034CrossRefGoogle Scholar
  15. 15.
    Wang H, Zhang Y, Ang H et al (2016) A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater 26:3082–3093CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Liu S, Zheng X et al (2017) Biomass organs control the porosity of their pyrolyzed carbon. Adv Funct Mater 27:1604687CrossRefGoogle Scholar
  17. 17.
    Hou H, Qiu X, Wei W, Zhang Y, Ji X (2017) Carbon anode materials for advanced sodium-ion batteries. Adv Energy Mater 27:1602898CrossRefGoogle Scholar
  18. 18.
    Gao X, Xing W, Zhou J et al (2014) Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochim Acta 133:459–466CrossRefGoogle Scholar
  19. 19.
    Cui J, Xi Y, Chen S et al (2016) Prolifera-green-tide as sustainable source for carbonaceous aerogels with hierarchical pore to achieve multiple energy storage. Adv Funct Mater 26:8487–8495CrossRefGoogle Scholar
  20. 20.
    Yu W, Wang H, Liu S et al (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4:5973–5983CrossRefGoogle Scholar
  21. 21.
    Wu M, Li P, Li Y, Liu J, Wang Y (2015) Enteromorpha based porous carbons activated by zinc chloride for supercapacitors with high capacity retention. RSC Adv 5:16575–16581CrossRefGoogle Scholar
  22. 22.
    Tian Z, Xiang M, Zhou J, Hu L, Cai J (2016) Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass: direct carbonization and excellent electrochemical properties. Electrochim Acta 211:225–233CrossRefGoogle Scholar
  23. 23.
    Yang M, Zhong Y, Ren J, Zhou X, Wei J, Zhou Z (2015) Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv Energy Mater 5:1500550CrossRefGoogle Scholar
  24. 24.
    Li H, Peng L, Zhu Y, Zhang X, Yu G (2016) Achieving high-energy–high-power density in a flexible quasi-solid-state sodium ion capacitor. Nano Lett 16:5938–5943CrossRefGoogle Scholar
  25. 25.
    Wang HL, Gao QM, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131:7016–7022CrossRefGoogle Scholar
  26. 26.
    Qie L, Chen W, Xiong X et al (2015) Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv Sci 2:1500195CrossRefGoogle Scholar
  27. 27.
    Cao Y, Xiao L, Sushko ML et al (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRefGoogle Scholar
  28. 28.
    Ding J, Li Z, Cui K, Boyer S, Karpuzov D, Mitlin D (2016) Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy 23:129–137CrossRefGoogle Scholar
  29. 29.
    Chen H, Chen C, Liu Y, et al (2017) High-quality graphene microflower design for high-performance Li–S and Al-ion batteries. Adv Energy Mater 7:1700051CrossRefGoogle Scholar
  30. 30.
    Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246CrossRefGoogle Scholar
  31. 31.
    Paton KR, Varrla E, Backes C et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630CrossRefGoogle Scholar
  32. 32.
    Qu K, Zheng Y, Dai S, Qiao SZ (2016) Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 19:373–381CrossRefGoogle Scholar
  33. 33.
    Xu J, Wang M, Wickramaratne NP, Jaroniec M, Dou S, Dai L (2015) High-performance sodium ion batteries based on three-dimensional anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048CrossRefGoogle Scholar
  34. 34.
    Tian J, Liu Z, Li Z, Wang W, Zhang H (2017) Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors. RSC Adv 7:12089–12097CrossRefGoogle Scholar
  35. 35.
    Hao E, Liu W, Liu S et al (2017) Rich sulfur doping porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage. J Mater Chem A 5:2204–2214CrossRefGoogle Scholar
  36. 36.
    Ou J, Yang L, Zhang Z, Xi X (2016) Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes. J Power Sour 333:193–202CrossRefGoogle Scholar
  37. 37.
    Si W, Zhou J, Zhang S, Li S, Xing W, Zhuo S (2013) Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim Acta 107:397–405CrossRefGoogle Scholar
  38. 38.
    Liu H, Liu X, Li W et al (2017) Porous carbon composites for next generation rechargeable lithium batteries. Adv Energy Mater. Google Scholar
  39. 39.
    Xu D, Chen C, Xie J et al (2016) A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater 6:1501929CrossRefGoogle Scholar
  40. 40.
    Ding J, Wang H, Li Z et al (2013) Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7:11004–11015CrossRefGoogle Scholar
  41. 41.
    Wang H, Yu W, Shi J, Mao N, Chen S, Liu W (2016) Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim Acta 188:103–110CrossRefGoogle Scholar
  42. 42.
    Lu M, Yu W, Shi J et al (2017) Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium and sodium-ion batteries. Electrochim Acta 251:396–406CrossRefGoogle Scholar
  43. 43.
    Yang T, Qian T, Wang M et al (2016) A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater 28:539–545CrossRefGoogle Scholar
  44. 44.
    Luo Z, Zhou J, Cao X et al (2017) Graphene oxide templated nitrogen-doped carbon nanosheets with superior rate capability for sodium ion batteries. Carbon 122:82–91CrossRefGoogle Scholar
  45. 45.
    Zhang H, Ming H, Zhang W, Cao G, Yang Y (2017) Coupled carbonization strategy towards advanced hard carbon for high energy sodium-ion battery. ACS Appl Mater 9:23766–23774CrossRefGoogle Scholar
  46. 46.
    Fan L, Liu Q, Chen S, Xu Z, Lu B (2017) Soft carbon as anode for high-performance sodium-based dual ion full battery. Adv Energy Mater 7:1602778CrossRefGoogle Scholar
  47. 47.
    Kumar NA, Gaddam RR, Suresh M et al (2017) Porphyrin-graphene oxide frameworks for long life sodium ion batteries. J Mater Chem A 5:13204–13211CrossRefGoogle Scholar
  48. 48.
    Zhao G, Zou G, Qiu X et al (2017) Rose-like N-doped porous carbon for advanced sodium storage. Electrochim Acta 240:24–30CrossRefGoogle Scholar
  49. 49.
    Zhu Y-E, Yang L, Zhou X, Li F, Wei J, Zhou Z (2017) Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. J Mater Chem A 5:9528–9532CrossRefGoogle Scholar
  50. 50.
    Zhao P-Y, Yu B-J, Sun S et al (2017) High-performance anode of sodium ion battery from polyacrylonitrile/humic acid composite electrospun carbon fibers. Electrochim Acta 232:348–356CrossRefGoogle Scholar
  51. 51.
    Zhang F, Yao Y, Wan J, Henderson D, Zhang X, Hu L (2017) High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl Mater 9:391–397CrossRefGoogle Scholar
  52. 52.
    Yan D, Xu X, Lu T, Hu B, Chua DHC, Pan L (2016) Reduced graphene oxide/carbon nanotubes sponge: a new high capacity and long life anode material for sodium-ion batteries. J Power Sour 316:132–138CrossRefGoogle Scholar
  53. 53.
    Ma L, Chen R, Hu Y et al (2016) Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Nanoscale 8:17911–17918CrossRefGoogle Scholar
  54. 54.
    Liu S, Cai Z, Zhou J, Pan A, Liang S (2016) Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J Mater Chem A 4:18278–18283CrossRefGoogle Scholar
  55. 55.
    Wang H, Mitlin D, Ding J, Li Z, Cui K (2016) Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J Mater Chem A 4:5149–5158CrossRefGoogle Scholar
  56. 56.
    Babu B, Shaijumon MM (2017) High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures. J Power Sour 353:85–94CrossRefGoogle Scholar
  57. 57.
    Lu K, Song B, Gao X, Dai H, Zhang J, Ma H (2016) High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors. J Power Sour 303:347–353CrossRefGoogle Scholar
  58. 58.
    Cui Y, Wang H, Mao N et al (2017) Tuning the morphology and structure of nanocarbons with activating agents for ultrafast ionic liquid-based supercapacitors. J Power Sour 361:182–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringOcean University of ChinaQingdaoChina

Personalised recommendations