Journal of Materials Science

, Volume 53, Issue 9, pp 6752–6762 | Cite as

Effectively enhanced thermopower in polyaniline/Bi0.5Sb1.5Te3 nanoplate composites via carrier energy scattering

  • Chunxi Guo
  • Fei Chu
  • Peng Chen
  • Juanjuan Zhu
  • Haifeng Wang
  • Lianjun Wang
  • Yuchi Fan
  • Wan Jiang
Energy materials


Carrier energy-filtering effect at organic–inorganic interface has been proved to be very effective for improving the performance of polymer-based thermoelectric composites. To introduce a large amount of organic–inorganic interfaces, Bi0.5Sb1.5Te3 nanoplates (BST NP) are fabricated and embedded into camphorsulfonic acid-doped polyaniline (CSA:PANI) through cryogenic grinding followed by hot pressing. It is found that BST NPs are dispersed uniformly in the matrix to form abundant hybrid interfaces in the CSA:PANI/BST NP composites, which shows great enhancement in Seebeck coefficient and power factor. The improvement can be attributed to energy-filtering effect at the CSA:PANI/BST NP interface, which is supported by the distinct transport behavior between CSA:PANI/BST NP and PANI/BST NP composites. Consequently, the maximum ZT values up to 8.637 × 10−4 at 300 K and 1.64 × 10−3 at 400 K are achieved, which is among the best thermoelectric performance of PANI-based bulk composites.



This work was funded by the National Natural Science Foundation of China (Nos. 51403037, 51774096), the Fundamental Research Funds for the Central Universities (2232017A-07), Shanghai Committee of Science and Technology (No. 16JC1401800), Program for Innovative Research Team in University of Ministry of Education of China (IRT_16R13), DHU Distinguished Young Professor Program, the Natural Science Foundation of Shanghai (17ZR1400900) and the Pujiang Talent Program (17PJ1400200).

Supplementary material

10853_2017_1958_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1327 kb)


  1. 1.
    Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114CrossRefGoogle Scholar
  2. 2.
    DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285:703–706CrossRefGoogle Scholar
  3. 3.
    Gelbstein Y, Tunbridge J, Dixon R et al (2013) Physical, mechanical, and structural properties of highly efficient nanostructured n- and p-silicides for practical thermoelectric applications. J Electron Mater 43:1703–1710CrossRefGoogle Scholar
  4. 4.
    Appel O, Schwall M, Mogilyansky D, Köhne M, Balke B, Gelbstein Y (2012) Effects of microstructural evolution on the thermoelectric properties of spark-plasma-sintered Ti0.3Zr0.35Hf0.35NiSn half-Heusler compound. J Electron Mater 42:1340–1345CrossRefGoogle Scholar
  5. 5.
    Appel O, Zilber T, Kalabukhov S, Beeri O, Gelbstein Y (2015) Morphological effects on the thermoelectric properties of Ti0.3Zr0.35Hf0.35Ni1+δSn alloys following phase separation. J Mater Chem C 3:11653–11659CrossRefGoogle Scholar
  6. 6.
    Vizel R, Bargig T, Beeri O, Gelbstein Y (2015) Bonding of Bi2Te3-based thermoelectric legs to metallic contacts using Bi0.82Sb0.18 alloy. J Electron Mater 45:1296–1300CrossRefGoogle Scholar
  7. 7.
    Gelbstein Y (2010) Pb1−x Sn xTe alloys: application considerations. J Electron Mater 40:533–536CrossRefGoogle Scholar
  8. 8.
    Gelbstein Y (2013) Phase morphology effects on the thermoelectric properties of Pb0.25Sn0.25Ge0.5Te. Acta Mater 61:1499–1507CrossRefGoogle Scholar
  9. 9.
    Dado B, Gelbstein Y, Mogilansky D, Ezersky V, Dariel MP (2009) Structural evolution following spinodal decomposition of the pseudoternary compound (Pb0.3Sn0.1Ge0.6)Te. J Electron Mater 39:2165–2171CrossRefGoogle Scholar
  10. 10.
    Hazan E, Ben-Yehuda O, Madar N, Gelbstein Y (2015) Functional graded germanium–lead chalcogenide-based thermoelectric module for renewable energy applications. Adv Energy Mater 5:1500272CrossRefGoogle Scholar
  11. 11.
    Choongho Yu YSK, Kim Dasaroyong, Grunlan Jaime C (2008) Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett 8:4428–4432CrossRefGoogle Scholar
  12. 12.
    Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L (2014) Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. J Mater Chem A 2:11107–11113CrossRefGoogle Scholar
  13. 13.
    Zhang Q, Prabhu A, San A, Al-Sharab JF, Levon K (2015) A polyaniline based ultrasensitive potentiometric immunosensor for cardiac troponin complex detection. Biosens Bioelectron 72:100–106CrossRefGoogle Scholar
  14. 14.
    Xie L-Q, Zhang Y-H, Gao F et al (2017) A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite. Chin Chem Lett 28:41–48CrossRefGoogle Scholar
  15. 15.
    Chen H-Y, Wang J, Meng L, Yang T, Jiao K (2016) Thin-layered MoS2/polyaniline nanocomposite for highly sensitive electrochemical detection of chloramphenicol. Chin Chem Lett 27:231–234CrossRefGoogle Scholar
  16. 16.
    Bubnova O, Khan ZU, Malti A et al (2011) Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 10:429–433CrossRefGoogle Scholar
  17. 17.
    Wang Q, Yao Q, Chang J, Chen L (2012) Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J Mater Chem 22:17612–17618CrossRefGoogle Scholar
  18. 18.
    Wang M, Xu Y-X (2016) Design and construction of three-dimensional graphene/conducting polymer for supercapacitors. Chin Chem Lett 27:1437–1444CrossRefGoogle Scholar
  19. 19.
    Li J, Tang X, Li H, Yan Y, Zhang Q (2010) Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline. Synth Met 160:1153–1158CrossRefGoogle Scholar
  20. 20.
    Yao Q, Wang Q, Wang L et al (2014) The synergic regulation of conductivity and Seebeck coefficient in pure polyaniline by chemically changing the ordered degree of molecular chains. J Mater Chem A 2:2634–2640CrossRefGoogle Scholar
  21. 21.
    Wang W, Sun S, Gu S et al (2014) One-pot fabrication and thermoelectric properties of Ag nanoparticles–polyaniline hybrid nanocomposites. RSC Adv 4:26810–26816CrossRefGoogle Scholar
  22. 22.
    Borup KA, de Boor J, Wang H et al (2015) Measuring thermoelectric transport properties of materials. Energy Environ Sci 8:423–435CrossRefGoogle Scholar
  23. 23.
    Wang W, Zhang Q, Li J et al (2015) An efficient thermoelectric material: preparation of reduced graphene oxide/polyaniline hybrid composites by cryogenic grinding. RSC Adv 5:8988–8995CrossRefGoogle Scholar
  24. 24.
    Liu Y, Song Z, Zhang Q et al (2015) Preparation of bulk AgNWs/PEDOT:PSS composites: a new model towards high-performance bulk organic thermoelectric materials. RSC Adv 5:45106–45112CrossRefGoogle Scholar
  25. 25.
    Feng X, Fan Y, Nomura N et al (2017) Graphene promoted oxygen vacancies in perovskite for enhanced thermoelectric properties. Carbon 112:169–176CrossRefGoogle Scholar
  26. 26.
    Du Y, Cai KF, Chen S, Cizek P, Lin T (2014) Facile preparation and thermoelectric properties of Bi(2)Te(3) based alloy nanosheet/PEDOT:PSS composite films. ACS Appl Mater Interfaces 6:5735–5743CrossRefGoogle Scholar
  27. 27.
    Weathers A, Khan ZU, Brooke R et al (2015) Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene). Adv Mater 27:2101–2106CrossRefGoogle Scholar
  28. 28.
    Bounioux C, Díaz-Chao P, Campoy-Quiles M et al (2013) Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor. Energy Environ Sci 6:918–925CrossRefGoogle Scholar
  29. 29.
    Yao Q, Wang Q, Wang L, Chen L (2014) Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering. Energy Environ Sci 7:3801–3807CrossRefGoogle Scholar
  30. 30.
    Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723CrossRefGoogle Scholar
  31. 31.
    Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37:820–841CrossRefGoogle Scholar
  32. 32.
    Qin Yao LC, Zhang W, Liufu S, Chen X (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4:2445–2451CrossRefGoogle Scholar
  33. 33.
    Wang Y, Zhang SM, Deng Y (2016) Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. J Mater Chem A 4:3554–3559CrossRefGoogle Scholar
  34. 34.
    Dresselhaus MS, Chen G, Tang MY et al (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053CrossRefGoogle Scholar
  35. 35.
    He M, Qiu F, Lin Z (2013) Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci 6:1352–1642CrossRefGoogle Scholar
  36. 36.
    He M, Ge J, Lin Z et al (2012) Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface. Energy Environ Sci 5:8351–8358CrossRefGoogle Scholar
  37. 37.
    Zebarjadi M, Esfarjani K, Dresselhaus MS, Ren ZF, Chen G (2012) Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ Sci 5:5147–5162CrossRefGoogle Scholar
  38. 38.
    Zhang Q, Wang W, Li J et al (2013) Preparation and thermoelectric properties of multi-walled carbon nanotube/polyaniline hybrid nanocomposites. J Mater Chem A 1:12109–12114CrossRefGoogle Scholar
  39. 39.
    Fan Y, Feng X, Zhou W et al (2018) Preparation of monophasic titanium sub-oxides of Magnéli phase with enhanced thermoelectric performance. J Eur Ceram Soc 38:507–513CrossRefGoogle Scholar
  40. 40.
    Fan Y, Ida S, Staykov A et al (2017) Ni–Fe nitride nanoplates on nitrogen-doped graphene as a synergistic catalyst for reversible oxygen evolution reaction and rechargeable Zn-air battery. Small 13:1700099CrossRefGoogle Scholar
  41. 41.
    Gelbstein Y (2009) Thermoelectric power and structural properties in two-phase Sn/SnTe alloys. J Appl Phys 105:023713CrossRefGoogle Scholar
  42. 42.
    Patil UV, Ramgir NS, Bhogale A et al (2017) Work function measurements of copper nanoparticle intercalated polyaniline nanocomposite thin films. AIP Conf Proc 1832:080092CrossRefGoogle Scholar
  43. 43.
    Shen S, Gao H, Deng Y, Wang Y, Qu S (2016) Facile fabrication of core–shell ZnO/Bi0.5Sb1.5Te3 nanorods: enhanced photoluminescence through electron charge. Appl Surf Sci 361:95–101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghaiChina
  2. 2.Institute of Functional MaterialsDonghua UniversityShanghaiChina
  3. 3.School of Material Science and EngineeringJingdezhen Ceramic InstituteJingdezhenChina

Personalised recommendations