Journal of Materials Science

, Volume 53, Issue 9, pp 6414–6423 | Cite as

Tunable luminescence properties and energy transfer of single-phase Ca4(PO4)2O: Dy3+, Eu2+ multi-color phosphors for warm white light

  • Zeqing Hu
  • Yan Guo
  • Jinghui Zhang
  • Yanjie Zhang
Chemical routes to materials


The novel Ca4−x(PO4)2O: xDy3+ and Ca4−xy(PO4)2O: xDy3+, yEu2+ multi-color phosphors were synthesized by traditional solid-state reaction. The crystal structure, particle morphology, photoluminescence properties and energy transfer process were investigated in detail. The X-ray diffraction (XRD) results demonstrate that the products showed pure monoclinic phase of Ca4(PO4)2O when x < 0.1. The scanning electron microscopy (SEM) indicated that the phosphors were grain-like morphologies with diameters of ~ 3.7–7.0 μm. Under excitation of 345 nm, Dy3+-doped Ca4(PO4)2O phosphors showed multi-color emission bands at 410, 481 and 580 nm originated from oxygen vacancies and Dy3+. Interestingly, Ca4(PO4)2O: Dy3+, Eu2+ phosphors exhibited blue emission band at 481 nm and broad emission band from 530 to 670 nm covering green to red regions. The energy transfer process from Dy3+ to Eu2+ was observed for the co-doped samples, and the energy transfer efficiency reached to 60% when Eu2+ molar concentration was 8%. In particular, warm/cool/day white light with adjustable CCT (2800–6700 K) and high CRI (Ra > 85) can be obtained by changing the Eu2+ co-doping contents in Ca4(PO4)2O: Dy3+, Eu2+ phosphors. The optimized Ca3.952(PO4)2O: 0.04Dy3+, 0.008Eu2+ phosphor can achieve the typical white light with CCT of 4735 K and CRI of 87.



This research is financially supported by the Natural Science Foundation of Liaoning Province (20170540065), the General Project of Liaoning Provincial Education Department (2016J057) and the Start-up Funding for Doctoral researchers of Dalian Polytechnic University (61020726).


  1. 1.
    Xie RJ, Hirosaki N (2007) Silicon-based oxynitride and nitride phosphors for white LEDs: a review. Sci Technol Adv Mat 8:588–600CrossRefGoogle Scholar
  2. 2.
    Höppe HA (2009) Recent developments in the field of inorganic phosphors. Angew Chem Int Ed 48:3572–3582CrossRefGoogle Scholar
  3. 3.
    Li YQ, Delsing ACA, With G, Hintzen HT (2005) Luminescence properties of Eu2 + -activated alkaline-earth silicon-oxynitride MSi2O2-δN2 + 2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors. Chem Mater 17:3242–3248CrossRefGoogle Scholar
  4. 4.
    Jang HS, Won YH, Jeon DY (2009) Improvement of electroluminescent property of blue LED coated with highly luminescent yellow-emitting phosphors. Appl Phys B 95:715–720CrossRefGoogle Scholar
  5. 5.
    Deng D, Yu H, Li Y, Hua Y, Jia G, Zhao S, Wang H, Huang L, Li Y, Li C, Xu S (2013) Ca4(PO4)2O:Eu2+ red-emitting phosphor for solid-state lighting: structure, luminescent properties and white light emitting diode application. J Mater Chem C 1:3194–3199CrossRefGoogle Scholar
  6. 6.
    Zhu H, Lin CC, Luo W, Shu S, Liu Z, Liu Y, Kong J, Ma E, Cao Y, Chen X (2014) Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes, Nat Commun 5:4312-1-10Google Scholar
  7. 7.
    Liu Y, Zhang X, Hao Z, Wang X, Zhang J (2011) Tunable full-color-emitting Ca3Sc2Si3O12:Ce3 + , Mn2 + phosphor via charge compensation and energy transfer. Chem Commun 47:10677–10679CrossRefGoogle Scholar
  8. 8.
    Xu C, Song Y, Guan H, Sheng Y, Ma P, Zhou X, Shi Z, Zou H (2017) The photoluminescence, thermal properties and tunable color of Na1−xAl1+2xSi12xO4:xCe3+/Tb3+/Dy3+ via energy transfer: a single-component multicolor-emitting phosphor. Phys Chem Chem Phys 19:22197–22209CrossRefGoogle Scholar
  9. 9.
    Wang Y, Ding J, Li Y, Yang L, Ding X, Wang Y (2016) A novel single-phase warm white emission phosphor Sr3YAl2O7.5:Bi3 + , Eu3 + with energy transfer for UV white LEDs. RSC Adv 6:42618–42626CrossRefGoogle Scholar
  10. 10.
    Sun J, Sun J (2016) Tunable color of Ce3+/Tb3+-codoped Ba3Sr4(BO3)3F5 phosphors for near-UV-pumped LEDs. J Mater Sci 51:1985–1995. CrossRefGoogle Scholar
  11. 11.
    Yu H, Lai Y, Gao G, Kong L, Li G, Gan S, Hong G (2011) Photoluminescence and energy transfer studies on Eu2+ and Ce3+ co-doped SrCaSiO4 for white light-emitting-diodes. J Alloys Compd 509:6635–6639CrossRefGoogle Scholar
  12. 12.
    Yu J, Gong W, Xiao Z, Ning G (2012) Spectral structure of barium-phosphate-silicate phosphor Ba10(PO4)4(SiO4)2:EuM+. J Lumin 132:2957–2960CrossRefGoogle Scholar
  13. 13.
    Bian L, Liu CW, Gao J, Jing XP (2015) Energy transfer and color tuning in the Ba9Sc2Si6O24: Ce3+, Eu2+, Mn2+ phosphor. RSC Adv 5:69458–69465CrossRefGoogle Scholar
  14. 14.
    Chen X, Dai P, Zhang X, Li C, Lu S, Wang X, Jia Y, Liu Y (2014) A highly efficient white light (Sr3, Ca, Ba)(PO4)3Cl: Eu2+, Tb3+, Mn2+ phosphor via dual energy transfers for white light-emitting diodes. Inorg Chem 53:3441–3448CrossRefGoogle Scholar
  15. 15.
    Chen Y, Li Y, Wang J, Wu M, Wang C (2014) Color-tunable phosphor of Eu2+ and Mn2+ codoped Ca2Sr(PO4)2 for UV light-emitting diodes. J Phys Chem C 118:12494–12499CrossRefGoogle Scholar
  16. 16.
    Kim JS, Jeon PE, Choi JC, Park HL, Mho SI, Kim GS (2004) Warm white light emitting diode utilizing a single phase full color Ba3MgSi2O8: Eu2+, Mn2+ phosphor. Appl Phys Lett 84:2931–2933CrossRefGoogle Scholar
  17. 17.
    Mothudi BM, Ntwaeaborwa OM, Shreyas Pitale S, Swart HC (2010) Luminescent properties of Ca0.97Al2O4:Eu0.012+, Dy0.023+ phosphors prepared by combustion method at different initiating temperatures. J Alloys Compd 508:262–265CrossRefGoogle Scholar
  18. 18.
    Gautier R, Li X, Xia Z, Massuyeau F (2017) Two-step design of a single-doped white phosphor with high color rendering. J Am Chem Soc 139:1436–1439CrossRefGoogle Scholar
  19. 19.
    Zhang Z, Tang W (2016) Tunable luminescence and energy transfer of Ce3+/Eu2+/Mn2+–tridoped Sr8MgLa(PO4)7 phosphor for white light LEDs. J Alloys Compd 663:731–737CrossRefGoogle Scholar
  20. 20.
    Sayed AK, Zhong H, Hu WW, Hao L-Y, Xin X, Noor ZK, Simeon A (2017) Novel single-phase full-color emitting Ba9Lu2Si6O24: Ce3+/Mn2+/Tb3+ phosphors for white LED applications. J Mater Sci 52:10927–10937. CrossRefGoogle Scholar
  21. 21.
    Wang C, Li P, Wang Z, Sun Y, Cheng J, Li Z, Tian M, Yang Z (2016) Crystal structure, luminescence properties, energy transfer and thermal properties of a novel color-tunable, white light-emitting phosphor Ca9−x-yCe(PO4)7: xEu2+, yMn2+. Phys Chem Chem Phys 18:28661–28673CrossRefGoogle Scholar
  22. 22.
    Jia Y, Pang R, Li H, Sun W, Fu J, Jiang L, Zhang S, Su Q, Li C, Liu RS (2015) Single-phased white-light-emitting Ca4(PO4)2O: Ce3+, Eu2+ phosphors based on energy transfer. Dalton T 44:11399–11407CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Gong W, Yu J, Pang H, Song Q, Ning G (2015) A new single-phase white-light-emitting CaWO4: Dy3+ phosphor: synthesis, luminescence and energy transfer. RSC Adv 5:62527–62533CrossRefGoogle Scholar
  24. 24.
    Chen F, Yuan X, Zhang F, Wang S (2014) Photoluminescence properties of Sr3(PO4)2: Eu2+, Dy3+ double-emitting blue phosphor for white LEDs. Opt Mater 37:65–69CrossRefGoogle Scholar
  25. 25.
    Foka KE, Dejene BF, Swart HC (2016) The effect of urea:nitrate ratio on the structure and luminescence properties of YVO4: Dy3+ phosphors. Phys B 480:95–99CrossRefGoogle Scholar
  26. 26.
    Gupta KK, Kadam RM, Dhoble NS, Lochab SP, Singh V, Dhoble SJ (2016) Photoluminescence, thermoluminescence and evaluation of some parameters of Dy3+ activated Sr5(PO4)3F phosphor synthesized by sol-gel method. J Alloys Compd 688:982–993CrossRefGoogle Scholar
  27. 27.
    Juárez-Batalla J, Meza-Rocha AN, Gerardo MH, Caldiño U (2017) Green to white tunable light emitting phosphors: Dy3+/Tb3+ in zinc phosphate glasses. Opt Mater 64:33–39CrossRefGoogle Scholar
  28. 28.
    Neharika N, Kumar V, Singh VK, Sharma J, Ntwaeaborwa OM, Swart HC (2016) Synthesis and photoluminescence study of a single dopant near white light emitting Li4CaB2O6: Dy3+ nanophosphor. J Alloys Compd 688:939–945CrossRefGoogle Scholar
  29. 29.
    Dutta S, Sharma SK (2016) Energy transfer between Dy3+ and Eu3+ in Dy3+/Eu3+-codoped Gd2MoO6. J Mater Sci 51:6750–6760. CrossRefGoogle Scholar
  30. 30.
    Shinde KN, Dhoble SJ, Kumar A (2011) Synthesis of novel Dy3+ activated phosphate phosphors for NUV excited LED. J Lumin 131:931–937CrossRefGoogle Scholar
  31. 31.
    Wang T, Hu Y, Chen L, Wang X, He M (2017) A white-light emitting phosphor LuNbO4:Dy3+ with tunable emission color manipulated by energy transfer from NbO4 3− groups to Dy3+. J Lumin 181:189–195CrossRefGoogle Scholar
  32. 32.
    Zhou Y, Zhu C, Zhang M, Liu J (2016) Optical properties of Eu- and Dy-doped calcium aluminoborosilicate glasses for LED applications. J Alloys Compd 688:715–720CrossRefGoogle Scholar
  33. 33.
    Vishwakarma AK, Jha K, Jayasimhadri M, Sivaiah B, Gahtori B, Haranath D (2015) Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications. Dalton Trans 44:17166–17174CrossRefGoogle Scholar
  34. 34.
    Dickens B, Brown WE, Kruger GJ, Stewart JM (1973) Ca4(PO4)2O, tetracalcium diphosphate monoxide. Crystal structure and relationships to Ca5(PO4)3OH and K3Na(SO4)2. Acta Cryst 29:2046–2056CrossRefGoogle Scholar
  35. 35.
    Komuro N, Mikami M, Saines PJ, Akimoto K, Cheetham AK (2015) Deep red emission in Eu2+-activated Sr4(PO4)2O phosphors for blue-pumped white LEDs. J Mater Chem C 3:7356–7362CrossRefGoogle Scholar
  36. 36.
    Wang W, Jiang C, Shen M, Fang L, Zheng F, Wu X, Shen J (2009) Effect of oxygen vacancies on the red emission of SrTiO3: Pr3+ phosphor films. Appl Phys Lett 94:081904-1–081904-3Google Scholar
  37. 37.
    Zhou J, Zhong J, Guo J, Liang H, Su Q, Tang Q, Tao Y, Moretti F, Lebbou K, Dujardin C (2016) The influence of oxygen vacancies on luminescence properties of Na3LuSi3O9: Ce3+. J Phys Chem C 120:18741–18747CrossRefGoogle Scholar
  38. 38.
    Jiao M, Jia Y, Lü W, Lv W, Zhao Q, Shao B, You H (2014) Structure and photoluminescence properties of novel Ca2NaSiO4F: Re (Re = Eu2+, Ce3+, Tb3+) phosphors with energy transfer for white emitting LEDs. J Mater Chem C 2:4304–4311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute of PhotonicsDalian Polytechnic UniversityDalianChina
  2. 2.The Second Affiliated HospitalDalian Medical UniversityDalianChina

Personalised recommendations