Skip to main content
Log in

Investigation of flame-retarded poly(butylene succinate) composites using MHSH as synergistic and reinforced agent

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Magnesium hydroxide sulfate whisker (MHSH) was used as flame-retarded synergistic agent of intumescent flame retardant (IFR), and to prepare flame-retarded PBS composites. The mechanical performance and flame-retardant properties of composites were investigated. Experimental data showed that an appropriate MHSH loading favored the mechanical performance and flame-retardant properties of composites. When IFR and MHSH loadings were 23 and 2 wt%, respectively, the limited oxygen index value of 39.8% and UL-94 V0 rate of composite could be achieved. The tensile strength increased by 33.3% in comparison with that of composite only prepared by 25 wt% IFR. XRD analysis indicated that the addition of MHSH significantly increased the crystallization of composites. FT-IR analysis demonstrated that P–O–Mg–O–P bonds could be generated during pyrolysis process. TG and cone calorimeter analyses both indicated that the incorporation of MHSH and IFR lowered the flammability of composites by limiting heat and mass transfer. Based on the experimental and analyses data, especially the SEM analysis, possible mechanism was proposed. The combustion products of MHSH and IFR provided a flame shield during combustion process. MHSH played a reinforcement effect in the shield. A more stable three-dimensional intumescent charred layer could not only effectually prevent the melt from dripping but also hinder the diffusion of oxygen and heat into the interior substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Liu L, Yu J, Cheng L et al (2009) Mechanical properties of poly(butylenes succinate) (PBS) biocomposite reinforced with surface modified jute fiber. Compos Part A Appl Sci 40(5):669–674

    Article  Google Scholar 

  2. Han SO, Lee SM, Park WH et al (2006) Mechanical and thermal properties of waste silk fiber-reinforced poly(butylene succinate) biocomposites. J Appl Polym Sci 100(6):4972–4980

    Article  Google Scholar 

  3. Faludi G, Dora G, Renner K (2013) Biocomposite from polylactic acid and lignocellulosic fibers: structure-property correlations. Carbohydr Polym 92(2):1767–1775

    Article  Google Scholar 

  4. Kim KJ, White JL (2009) Effects of regenerated cellulose and natural fiber on interfacial adhesion, rheology and crystallization property in epsilon-polycaprolactone compounds. Compos Interface 16(7–9):619–637

    Article  Google Scholar 

  5. Shen YL, Gong WG, Zheng BC et al (2016) Synergistic effect of Ni-based bimetallic catalyst with intumescent flame retardant on flame retardancy and thermal stability of polypropylene. Polym Degrad Stab 129:114–124

    Article  Google Scholar 

  6. Zheng ZH, Liu Y, Zhang L et al (2016) Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene. J Mater Sci 51(12):5857–5871

    Article  Google Scholar 

  7. Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17(22):2283–2300

    Article  Google Scholar 

  8. Hu WZ, Wang BB, Wang X et al (2014) Effect of ethyl cellulose microencapsulated ammonium polyphosphate on flame retardancy, mechanical and thermal properties of flame retardant poly(butylene succinate) composites. J Therm Anal Calorim 117(1):27–28

    Article  Google Scholar 

  9. Kuan CF, Kuan HC, Ma CCM et al (2006) Flame retardancy and nondripping properties of ammonium polyphosphate/poly(butylene succinate) composites enhanced by water crosslinking. J Appl Polym Sci 102(3):2935–2945

    Article  Google Scholar 

  10. Wang X, Hu Y, Song L et al (2012) Comparative study on the synergistic effect of POSS and graphene with melamine phosphate on the flame retardance of poly(butylene succinate). Thermochim Acta 543:156–164

    Article  Google Scholar 

  11. Chen YJ, Zhan J, Zhang P et al (2010) Preparation of intumescent flame retardant poly(butylene succinate) using fumed silica as synergistic agent. Ind Eng Chem Res 49(17):8200–8208

    Article  Google Scholar 

  12. Gallo E, Braun U, Schartel B et al (2009) Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinates. Polym Degrad Stab 94(8):1245–1253

    Article  Google Scholar 

  13. Laachachi A, Cochez M, Leroy E et al (2007) Fire retardant systems in poly(methyl methacrylate): interactions between metal oxide nanoparticles and phosphinates. Polym Degrad Stab 92(1):61–69

    Article  Google Scholar 

  14. Zhao WP, Gao CH, Wang T (2015) Effect of alcohols additives on hydrothermal formation of magnesium hydroxide sulfate hydrate whiskers. Cryst Res Technol 50(8):676–681

    Article  Google Scholar 

  15. Gao CH, Li XG, Feng LJ et al (2010) Surface modification and characterization of magnesium hydroxide sulfate hydrate nanowhiskers. Appl Surf Sci 256(10):3234–3239

    Article  Google Scholar 

  16. Lu HD, Hu Y, Xiao JF et al (2006) Magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene/montmorillonite nanocomposites. J Mater Sci 41(2):363–367

    Article  Google Scholar 

  17. Liao SF, Deng C, Huang SC (2016) An efficient halogen-free flame retardant for polyethylene: piperazine-modified ammonium polyphosphates with different structures. Chin J Polym Sci 34(11):1339–1353

    Article  Google Scholar 

  18. Liang H, Shi WF (2004) Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings. Polym Degrad Stab 84(3):525–532

    Article  Google Scholar 

  19. Shih YF, Chieh YC (2007) Thermal degradation behavior and kinetic analysis of biodegradable polymers using various comparative models, 1-poly(butylene succinate). Macromol Theory Simul 16(1):101–110

    Article  Google Scholar 

  20. Tai HJ (2011) Dielectric spectroscopy of poly(butylene succinate-co-butylene adipate) films. Polym Eng Sci 51(2):386–390

    Article  Google Scholar 

  21. Yan C, Zhang Y, Hu Y et al (2008) Melt crystallization and crystal transition ofpoly(butylene adipate) revealed by infrared spectroscopy. J Phys Chem B 112(11):3311–3314

    Article  Google Scholar 

  22. Levchik SV, Levchik GF, Camino G et al (1995) Mechanism of action of phosphorus-based flame retardants in nylon-6 II. Ammonium polyphosphate/talc. J Fire Sci 13(1):43–58

    Article  Google Scholar 

  23. Wang ZZ, Zhou S, Hu Y (2009) Intumescent flame retardation and silane crosslinking of PP/EPDM elastomer. Polym Adv Technol 20(4):393–403

    Article  Google Scholar 

  24. Li N, Xia Y, Mao ZW (2012) Influence of antimony oxide on flammability of polypropylene/intumescent flame retardant system. Polym Degrad Stab 97(9):1737–1744

    Article  Google Scholar 

  25. Xia Y, Jin FF, Mao ZW et al (2014) Effects of ammonium polyphosphate to pentaerythritol ratio on composition and properties of carbonaceous foam deriving from intumescent flame-retardant polypropylene. Polym Degrad Stab 107(4):64–73

    Article  Google Scholar 

  26. Formosaa J, Chimenosa JM, Lacastac AM et al (2011) Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection. Thermochim Acta 515(1):43–50

    Article  Google Scholar 

  27. Bourbigot B, Bras ML, Duquesne S et al (2004) Recent advances for intumescent polymers. Macromol Mater Eng 289(6):499–511

    Article  Google Scholar 

  28. Bourbigot B, Bras ML, Delobel R et al (1993) Carbonization mechanisms resulting from intumescence-part II. Association with an ethylene terpolymer and the ammonium polyphosphate–pentaerythritol fire retardant system. Carbon 31(3):1219–1230

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate The National Natural Science Foundation of China (Contract Grant Number: 51603118), Natural Science Foundation of Shaanxi Province (Contract Grant Number: 2015JQ3088) and Academic Leader Team Program of Shaanxi University of Science and Technology (Contract Grant Number: 2013XSD25) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Li, J., Liu, P. et al. Investigation of flame-retarded poly(butylene succinate) composites using MHSH as synergistic and reinforced agent. J Mater Sci 53, 5004–5015 (2018). https://doi.org/10.1007/s10853-017-1915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1915-7

Keywords

Navigation