Skip to main content

Advertisement

Log in

Auxetic metamaterials inspired from wine-racks

  • Computation
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

‘Wine-rack’ motifs are formally shown to exhibit the unexpected property of a negative Poisson’s ratio (auxetic behaviour) for loading in particular directions. This property is confirmed through the analysis of analytical expressions for the in-plane off-axis mechanical properties derived for an idealised hinging wine-rack model as well as through molecular simulations of nanoscale molecular systems. It is also shown that auxeticity for loading off-axis complements the more well-known property of negative compressibility demonstrated in other directions which results from the very high positive Poisson’s ratio exhibited on-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Baughman RH, Stafstrom S, Cui C, Dantas SO (1998) Materials with negative compressibilities in one or more dimensions. Science 279:1522–1524. https://doi.org/10.1126/science.279.5356.1522

    Article  Google Scholar 

  2. Goodwin AL, Keen DA, Tucker MG (2008) Large negative linear compressibility of Ag3[Co(CN)6]. Proc Natl Acad Sci USA 105:18708–18713. https://doi.org/10.1073/pnas.0804789105

    Article  Google Scholar 

  3. Fortes AD, Suard E, Knight KS (2011) Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331:742–746. https://doi.org/10.1126/science.1198640

    Article  Google Scholar 

  4. Cairns AB, Catafesta J, Levelut C et al (2013) Giant negative linear compressibility in zinc dicyanoaurate. Nat Mater 12:212–216. https://doi.org/10.1038/nmat3551

    Article  Google Scholar 

  5. Cairns AB, Thompson AL, Tucker MG et al (2012) Rational design of materials with extreme negative compressibility: selective soft-mode frustration in KMn[Ag(CN)2]3. J Am Chem Soc 134:4454–4456. https://doi.org/10.1021/ja204908m

    Article  Google Scholar 

  6. Ortiz AU, Boutin A, Fuchs AH, Coudert F-X (2013) Metal-organic frameworks with wine-rack motif: what determines their flexibility and elastic properties? J Chem Phys 138:174703. https://doi.org/10.1063/1.4802770

    Article  Google Scholar 

  7. Coudert F-X (2013) Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. Phys Chem Chem Phys 15:16012. https://doi.org/10.1039/c3cp51817e

    Article  Google Scholar 

  8. Grima JN, Attard D, Caruana-Gauci R, Gatt R (2011) Negative linear compressibility of hexagonal honeycombs and related systems. Scr Mater 65:565–568. https://doi.org/10.1016/j.scriptamat.2011.06.011

    Article  Google Scholar 

  9. Gatt R, Caruana-Gauci R, Grima JN (2013) Negative linear compressibility: giant response. Nat Mater 12:182–183. https://doi.org/10.1038/nmat3584

    Article  Google Scholar 

  10. Zhou X, Zhang L, Zhang H et al (2016) 3D cellular models with negative compressibility through the wine-rack-type mechanism. Phys Status Solidi B 253:1977–1993. https://doi.org/10.1002/pssb.201600128

    Article  Google Scholar 

  11. Qiao Y, Wang K, Yuan H et al (2015) Negative linear compressibility in organic mineral ammonium oxalate monohydrate with hydrogen bonding wine-rack motifs. J Phys Chem Lett 6:2755–2760. https://doi.org/10.1021/acs.jpclett.5b01129

    Article  Google Scholar 

  12. Barnes DL, Miller W, Evans KE, Marmier A (2012) Modelling negative linear compressibility in tetragonal beam structures. Mech Mater 46:123–128. https://doi.org/10.1016/j.mechmat.2011.12.007

    Article  Google Scholar 

  13. Li W, Probert MR, Kosa M et al (2012) Negative linear compressibility of a metal-organic framework. J Am Chem Soc 134:11940–11943. https://doi.org/10.1021/ja305196u

    Article  Google Scholar 

  14. Yeung HH-M, Kilmurray R, Hobday CL et al (2017) Hidden negative linear compressibility in lithium l-tartrate. Phys Chem Chem Phys 19:3544–3549. https://doi.org/10.1039/C6CP08690J

    Article  Google Scholar 

  15. Harty EL, Ha AR, Warren MR et al (2015) Reversible piezochromism in a molecular wine-rack. Chem Commun (Camb) 51:10608–10611. https://doi.org/10.1039/c5cc02916c

    Article  Google Scholar 

  16. Goodwin AL, Calleja M, Conterio MJ et al (2008) Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science 319:794–797. https://doi.org/10.1126/science.1151442

    Article  Google Scholar 

  17. Calleja M, Goodwin AL, Dove MT (2008) Origin of the colossal positive and negative thermal expansion in Ag3[Co(CN)6]: an ab initio density functional theory study. J Phys: Condens Matter 20:255226. https://doi.org/10.1088/0953-8984/20/25/255226

    Google Scholar 

  18. Wang L, Wang C, Luo H, Sun Y (2017) Correlation between uniaxial negative thermal expansion and negative linear compressibility in Ag3[Co(CN)6]. J Phys Chem C 121:333–341. https://doi.org/10.1021/acs.jpcc.6b09944

    Article  Google Scholar 

  19. Smith CW, Grima JN, Evans KE (2000) A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater 48:4349–4356. https://doi.org/10.1016/S1359-6454(00)00269-X

    Article  Google Scholar 

  20. Masters IG, Evans KE (1996) Models for the elastic deformation of honeycombs. Compos Struct 35:403–422. https://doi.org/10.1016/S0263-8223(96)00054-2

    Article  Google Scholar 

  21. Lakes RS (1987) Foam structures with a negative Poisson’s ratio. Science 235:1038–1040. https://doi.org/10.1126/science.235.4792.1038

    Article  Google Scholar 

  22. Friis EA, Lakes RS, Park JB (1988) Negative Poisson’s ratio polymeric and metallic foams. J Mater Sci 23:4406–4414. https://doi.org/10.1007/BF00551939

    Article  Google Scholar 

  23. Wojciechowski KW (1987) Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61:1247–1258. https://doi.org/10.1080/00268978700101761

    Article  Google Scholar 

  24. Evans KE (1991) Auxetic polymers: a new range of materials. Endeavour 15:170–174. https://doi.org/10.1016/0160-9327(91)90123-S

    Article  Google Scholar 

  25. Lakes RS (1991) Deformation mechanisms in negative Poisson’s ratio materials: structural aspects. J Mater Sci 26:2287–2292. https://doi.org/10.1007/BF01130170

    Article  Google Scholar 

  26. Evans KE, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking! Adv Mater 12:617–628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617:AID-ADMA617>3.0.CO;2-3

    Article  Google Scholar 

  27. Prall D, Lakes RS (1997) Properties of a chiral honeycomb with a Poisson’s ratio of -1. Int J Mech Sci 39:305–314. https://doi.org/10.1016/S0020-7403(96)00025-2

    Article  Google Scholar 

  28. Sigmund O, Torquato S, Aksay IA (1998) On the design of 1–3 piezocomposites using topology optimization. J Mater Res 13:1038–1048. https://doi.org/10.1557/JMR.1998.0145

    Article  Google Scholar 

  29. Grima JN, Evans KE (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19:1563–1565. https://doi.org/10.1023/A:1006781224002

    Article  Google Scholar 

  30. Yeganeh-Haeri A, Weidner DJ, Parise JB (1992) Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson’s ratio. Science 257:650–652. https://doi.org/10.1126/science.257.5070.650

    Article  Google Scholar 

  31. Alderson KL, Evans KE (1993) Strain-dependent behaviour of microporous polyethylene with a negative Poisson’s ratio. J Mater Sci 28:4092–4098. https://doi.org/10.1007/BF00351238

    Article  Google Scholar 

  32. Baughman RH, Shacklette JM, Zakhidov AA, Stafstrom S (1998) Negative Poisson’s ratios as a common feature of cubic metals. Nature 392:362–365. https://doi.org/10.1038/32842

    Article  Google Scholar 

  33. He C, Liu P, Griffin AC (1998) Toward negative Poisson ratio polymers through molecular design. Macromolecules 31:3145–3147. https://doi.org/10.1021/ma970787m

    Article  Google Scholar 

  34. Hine PJ, Duckett RA, Ward IM (1997) Negative Poisson’s ratios in angle-ply laminates. J Mater Sci Lett 16:541–544

    Article  Google Scholar 

  35. Gaspar N, Smith CW, Alderson A et al (2011) A generalised three-dimensional tethered-nodule model for auxetic materials. J Mater Sci 46:372–384. https://doi.org/10.1007/s10853-010-4846-0

    Article  Google Scholar 

  36. Attard D, Grima JN (2008) Auxetic behaviour from rotating rhombi. Phys Status Solidi B 245:2395–2404. https://doi.org/10.1002/pssb.200880269

    Article  Google Scholar 

  37. Wojciechowski KW (1989) Two-dimensional isotropic system with a negative Poisson ratio. Phys Lett A 137:60–64. https://doi.org/10.1016/0375-9601(89)90971-7

    Article  Google Scholar 

  38. Wojciechowski KW (2003) Non-chiral, molecular model of negative Poisson ratio in two dimensions. J Phys A: Math Gen 36:11765–11778

    Article  Google Scholar 

  39. Babaee S, Shim J, Weaver JC et al (2013) 3D soft metamaterials with negative Poisson’s ratio. Adv Mater 25:5044–5049. https://doi.org/10.1002/adma.201301986

    Article  Google Scholar 

  40. Alderson A (1999) A triumph of lateral thought. Chem Ind 10:384–391

    Google Scholar 

  41. Lakes RS (1993) Advances in negative Poisson’s ratio materials. Adv Mater 5:293–296. https://doi.org/10.1002/adma.19930050416

    Article  Google Scholar 

  42. Hassan MR, Scarpa F, Mohamed NA (2004) Shape memory alloys honeycomb: design and properties. In: Proc. SPIE 5387, Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics, pp 557–564. https://doi.org/10.1117/12.555597

  43. Strek T, Kedziora P, Maruszewski BT et al (2009) Finite element analysis of auxetic obstacle deformation and fluid flow in a channel. J Non Cryst Solids 355:1387–1392. https://doi.org/10.1016/j.jnoncrysol.2009.05.032

    Article  Google Scholar 

  44. Scarpa F, Pastorino P, Garelli A et al (2005) Auxetic compliant flexible PU foams: static and dynamic properties. Phys Status Solidi B 242:681–694. https://doi.org/10.1002/pssb.200460386

    Article  Google Scholar 

  45. Jacobs MJN, Van Dingenen JLJ (2001) Ballistic protection mechanisms in personal armour. J Mater Sci 36:3137–3142. https://doi.org/10.1023/A:1017922000090

    Article  Google Scholar 

  46. Yang W, Li Z-M, Shi W et al (2004) Review on auxetic materials. J Mater Sci 39:3269–3279. https://doi.org/10.1023/B:JMSC.0000026928.93231.e0

    Article  Google Scholar 

  47. Bianchi M, Scarpa F, Smith CW (2008) Stiffness and energy dissipation in polyurethane auxetic foams. J Mater Sci 43:5851–5860. https://doi.org/10.1007/s10853-008-2841-5

    Article  Google Scholar 

  48. Ali MN, Busfield JJC, Rehman IU (2013) Auxetic oesophageal stents: structure and mechanical properties. J Mater Sci Mater Med 25:527–553. https://doi.org/10.1007/s10856-013-5067-2

    Article  Google Scholar 

  49. Grima JN, Williams JJ, Evans KE (2005) Networked calix[4]arene polymers with unusual mechanical properties. Chem Commun 1:4065–4067. https://doi.org/10.1039/b505839b

    Article  Google Scholar 

  50. Sanami M, Ravirala N, Alderson KL, Alderson A (2014) Auxetic materials for sports applications. Procedia Eng 72:453–458. https://doi.org/10.1016/j.proeng.2014.06.079

    Article  Google Scholar 

  51. Grima JN, Gatt R (2010) Perforated sheets exhibiting negative Poisson’s ratios. Adv Eng Mater 12:460–464. https://doi.org/10.1002/adem.201000005

    Article  Google Scholar 

  52. Milton GW, Cherkaev AV (1995) Which elasticity tensors are realizable? J Eng Mater Technol 117:483–493. https://doi.org/10.1115/1.2804743

    Article  Google Scholar 

  53. Grima JN, Alderson A, Evans KE (2005) Auxetic behaviour from rotating rigid units. Phys Status Solidi B 242:561–575. https://doi.org/10.1002/pssb.200460376

    Article  Google Scholar 

  54. Nye JF (1964) Physical properties of crystals: Their representation by tensors and matrices. Oxford University Press, Oxford

    Google Scholar 

  55. Evans KE, Nkansah MA, Hutchinson IJ, Rogers S (1991) Molecular network design. Nature 353:124. https://doi.org/10.1038/353124a0

    Article  Google Scholar 

  56. Grima JN, Zerafa C, Brincat J-P (2014) Development of novel poly(phenylacetylene) network polymers and their mechanical behaviour. Phys Status Solidi B 251:375–382. https://doi.org/10.1002/pssb.201384254

    Article  Google Scholar 

  57. Grima JN, Degabriele EP, Attard D (2016) Nano networks exhibiting negative linear compressibility. Phys Status Solidi B 253:1419–1427. https://doi.org/10.1002/pssb.201600276

    Article  Google Scholar 

  58. Formosa JP, Cauchi R, Grima JN (2015) Carbon allotropes exhibiting negative linear compressibility. Phys Status Solidi B 252:1656–1663. https://doi.org/10.1002/pssb.201552234

    Article  Google Scholar 

  59. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909. https://doi.org/10.1021/j100389a010

    Article  Google Scholar 

  60. Rappe AK, Goddard WA (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363. https://doi.org/10.1021/j100161a070

    Article  Google Scholar 

  61. Hautman J, Klein ML (1992) An Ewald summation method for planar surfaces and interfaces. Mol Phys 75:379–395. https://doi.org/10.1080/00268979200100301

    Article  Google Scholar 

  62. Rappe AK, Casewit CJ, Colwell KS et al (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035. https://doi.org/10.1021/ja00051a040

    Article  Google Scholar 

  63. Walker PL (1990) Carbon: an old but new material revisited. Carbon 28:261–279. https://doi.org/10.1016/0008-6223(90)90001-F

    Article  Google Scholar 

  64. Hunter CA, Sanders JKM (1990) The nature of Pi-Pi interactions. J Am Chem Soc 112:5525–5534. https://doi.org/10.1021/ja00170a016

    Article  Google Scholar 

  65. Huang C, Chen L (2016) Negative Poisson’s ratio in modern functional materials. Adv Mater 28:8079–8096. https://doi.org/10.1002/adma.201601363

    Article  Google Scholar 

  66. Ortiz AU, Boutin A, Fuchs AH, Coudert F-X (2012) Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? Phys Rev Lett 109:195502. https://doi.org/10.1103/PhysRevLett.109.195502

    Article  Google Scholar 

  67. Ortiz AU, Boutin A, Coudert F-X (2014) Prediction of flexibility of metal-organic frameworks CAU-13 and NOTT-300 by first principles molecular simulations. Chem Commun 50:5867–5870. https://doi.org/10.1039/c4cc00734d

    Article  Google Scholar 

  68. Huang CW, Ren W, Nguyen VC et al (2012) Abnormal Poisson’s ratio and linear compressibility in perovskite materials. Adv Mater 24:4170–4174. https://doi.org/10.1002/adma.201104676

    Article  Google Scholar 

  69. Ogborn JM, Collings IE, Moggach SA et al (2012) Supramolecular mechanics in a metal–organic framework. Chem Sci 3:3011–3017. https://doi.org/10.1039/c2sc20596c

    Article  Google Scholar 

  70. Serra-Crespo P, Dikhtiarenko A, Stavitski E et al (2014) Experimental evidence of negative linear compressibility in the MIL-53 metal–organic framework family. CrystEngComm 17:276–280. https://doi.org/10.1039/c4ce00436a

    Article  Google Scholar 

  71. Bennett TD, Cheetham AK (2014) Amorphous metal-organic frameworks. Acc Chem Res 47:1555–1562. https://doi.org/10.1021/ar5000314

    Article  Google Scholar 

  72. Coudert F-X (2015) Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem Mater 27:1905–1916. https://doi.org/10.1021/acs.chemmater.5b00046

    Article  Google Scholar 

  73. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444. https://doi.org/10.1126/science.1230444

    Article  Google Scholar 

  74. Grima JN, Gatt R, Alderson A, Evans KE (2006) An alternative explanation for the negative Poisson’s ratios in alpha-cristobalite. Mater Sci Eng A 423:219–224. https://doi.org/10.1016/j.msea.2005.08.230

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the University of Malta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph N. Grima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruana-Gauci, R., Degabriele, E.P., Attard, D. et al. Auxetic metamaterials inspired from wine-racks. J Mater Sci 53, 5079–5091 (2018). https://doi.org/10.1007/s10853-017-1875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1875-y

Keywords