Abstract
‘Wine-rack’ motifs are formally shown to exhibit the unexpected property of a negative Poisson’s ratio (auxetic behaviour) for loading in particular directions. This property is confirmed through the analysis of analytical expressions for the in-plane off-axis mechanical properties derived for an idealised hinging wine-rack model as well as through molecular simulations of nanoscale molecular systems. It is also shown that auxeticity for loading off-axis complements the more well-known property of negative compressibility demonstrated in other directions which results from the very high positive Poisson’s ratio exhibited on-axis.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Baughman RH, Stafstrom S, Cui C, Dantas SO (1998) Materials with negative compressibilities in one or more dimensions. Science 279:1522–1524. https://doi.org/10.1126/science.279.5356.1522
Goodwin AL, Keen DA, Tucker MG (2008) Large negative linear compressibility of Ag3[Co(CN)6]. Proc Natl Acad Sci USA 105:18708–18713. https://doi.org/10.1073/pnas.0804789105
Fortes AD, Suard E, Knight KS (2011) Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331:742–746. https://doi.org/10.1126/science.1198640
Cairns AB, Catafesta J, Levelut C et al (2013) Giant negative linear compressibility in zinc dicyanoaurate. Nat Mater 12:212–216. https://doi.org/10.1038/nmat3551
Cairns AB, Thompson AL, Tucker MG et al (2012) Rational design of materials with extreme negative compressibility: selective soft-mode frustration in KMn[Ag(CN)2]3. J Am Chem Soc 134:4454–4456. https://doi.org/10.1021/ja204908m
Ortiz AU, Boutin A, Fuchs AH, Coudert F-X (2013) Metal-organic frameworks with wine-rack motif: what determines their flexibility and elastic properties? J Chem Phys 138:174703. https://doi.org/10.1063/1.4802770
Coudert F-X (2013) Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. Phys Chem Chem Phys 15:16012. https://doi.org/10.1039/c3cp51817e
Grima JN, Attard D, Caruana-Gauci R, Gatt R (2011) Negative linear compressibility of hexagonal honeycombs and related systems. Scr Mater 65:565–568. https://doi.org/10.1016/j.scriptamat.2011.06.011
Gatt R, Caruana-Gauci R, Grima JN (2013) Negative linear compressibility: giant response. Nat Mater 12:182–183. https://doi.org/10.1038/nmat3584
Zhou X, Zhang L, Zhang H et al (2016) 3D cellular models with negative compressibility through the wine-rack-type mechanism. Phys Status Solidi B 253:1977–1993. https://doi.org/10.1002/pssb.201600128
Qiao Y, Wang K, Yuan H et al (2015) Negative linear compressibility in organic mineral ammonium oxalate monohydrate with hydrogen bonding wine-rack motifs. J Phys Chem Lett 6:2755–2760. https://doi.org/10.1021/acs.jpclett.5b01129
Barnes DL, Miller W, Evans KE, Marmier A (2012) Modelling negative linear compressibility in tetragonal beam structures. Mech Mater 46:123–128. https://doi.org/10.1016/j.mechmat.2011.12.007
Li W, Probert MR, Kosa M et al (2012) Negative linear compressibility of a metal-organic framework. J Am Chem Soc 134:11940–11943. https://doi.org/10.1021/ja305196u
Yeung HH-M, Kilmurray R, Hobday CL et al (2017) Hidden negative linear compressibility in lithium l-tartrate. Phys Chem Chem Phys 19:3544–3549. https://doi.org/10.1039/C6CP08690J
Harty EL, Ha AR, Warren MR et al (2015) Reversible piezochromism in a molecular wine-rack. Chem Commun (Camb) 51:10608–10611. https://doi.org/10.1039/c5cc02916c
Goodwin AL, Calleja M, Conterio MJ et al (2008) Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science 319:794–797. https://doi.org/10.1126/science.1151442
Calleja M, Goodwin AL, Dove MT (2008) Origin of the colossal positive and negative thermal expansion in Ag3[Co(CN)6]: an ab initio density functional theory study. J Phys: Condens Matter 20:255226. https://doi.org/10.1088/0953-8984/20/25/255226
Wang L, Wang C, Luo H, Sun Y (2017) Correlation between uniaxial negative thermal expansion and negative linear compressibility in Ag3[Co(CN)6]. J Phys Chem C 121:333–341. https://doi.org/10.1021/acs.jpcc.6b09944
Smith CW, Grima JN, Evans KE (2000) A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater 48:4349–4356. https://doi.org/10.1016/S1359-6454(00)00269-X
Masters IG, Evans KE (1996) Models for the elastic deformation of honeycombs. Compos Struct 35:403–422. https://doi.org/10.1016/S0263-8223(96)00054-2
Lakes RS (1987) Foam structures with a negative Poisson’s ratio. Science 235:1038–1040. https://doi.org/10.1126/science.235.4792.1038
Friis EA, Lakes RS, Park JB (1988) Negative Poisson’s ratio polymeric and metallic foams. J Mater Sci 23:4406–4414. https://doi.org/10.1007/BF00551939
Wojciechowski KW (1987) Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61:1247–1258. https://doi.org/10.1080/00268978700101761
Evans KE (1991) Auxetic polymers: a new range of materials. Endeavour 15:170–174. https://doi.org/10.1016/0160-9327(91)90123-S
Lakes RS (1991) Deformation mechanisms in negative Poisson’s ratio materials: structural aspects. J Mater Sci 26:2287–2292. https://doi.org/10.1007/BF01130170
Evans KE, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking! Adv Mater 12:617–628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617:AID-ADMA617>3.0.CO;2-3
Prall D, Lakes RS (1997) Properties of a chiral honeycomb with a Poisson’s ratio of -1. Int J Mech Sci 39:305–314. https://doi.org/10.1016/S0020-7403(96)00025-2
Sigmund O, Torquato S, Aksay IA (1998) On the design of 1–3 piezocomposites using topology optimization. J Mater Res 13:1038–1048. https://doi.org/10.1557/JMR.1998.0145
Grima JN, Evans KE (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19:1563–1565. https://doi.org/10.1023/A:1006781224002
Yeganeh-Haeri A, Weidner DJ, Parise JB (1992) Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson’s ratio. Science 257:650–652. https://doi.org/10.1126/science.257.5070.650
Alderson KL, Evans KE (1993) Strain-dependent behaviour of microporous polyethylene with a negative Poisson’s ratio. J Mater Sci 28:4092–4098. https://doi.org/10.1007/BF00351238
Baughman RH, Shacklette JM, Zakhidov AA, Stafstrom S (1998) Negative Poisson’s ratios as a common feature of cubic metals. Nature 392:362–365. https://doi.org/10.1038/32842
He C, Liu P, Griffin AC (1998) Toward negative Poisson ratio polymers through molecular design. Macromolecules 31:3145–3147. https://doi.org/10.1021/ma970787m
Hine PJ, Duckett RA, Ward IM (1997) Negative Poisson’s ratios in angle-ply laminates. J Mater Sci Lett 16:541–544
Gaspar N, Smith CW, Alderson A et al (2011) A generalised three-dimensional tethered-nodule model for auxetic materials. J Mater Sci 46:372–384. https://doi.org/10.1007/s10853-010-4846-0
Attard D, Grima JN (2008) Auxetic behaviour from rotating rhombi. Phys Status Solidi B 245:2395–2404. https://doi.org/10.1002/pssb.200880269
Wojciechowski KW (1989) Two-dimensional isotropic system with a negative Poisson ratio. Phys Lett A 137:60–64. https://doi.org/10.1016/0375-9601(89)90971-7
Wojciechowski KW (2003) Non-chiral, molecular model of negative Poisson ratio in two dimensions. J Phys A: Math Gen 36:11765–11778
Babaee S, Shim J, Weaver JC et al (2013) 3D soft metamaterials with negative Poisson’s ratio. Adv Mater 25:5044–5049. https://doi.org/10.1002/adma.201301986
Alderson A (1999) A triumph of lateral thought. Chem Ind 10:384–391
Lakes RS (1993) Advances in negative Poisson’s ratio materials. Adv Mater 5:293–296. https://doi.org/10.1002/adma.19930050416
Hassan MR, Scarpa F, Mohamed NA (2004) Shape memory alloys honeycomb: design and properties. In: Proc. SPIE 5387, Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics, pp 557–564. https://doi.org/10.1117/12.555597
Strek T, Kedziora P, Maruszewski BT et al (2009) Finite element analysis of auxetic obstacle deformation and fluid flow in a channel. J Non Cryst Solids 355:1387–1392. https://doi.org/10.1016/j.jnoncrysol.2009.05.032
Scarpa F, Pastorino P, Garelli A et al (2005) Auxetic compliant flexible PU foams: static and dynamic properties. Phys Status Solidi B 242:681–694. https://doi.org/10.1002/pssb.200460386
Jacobs MJN, Van Dingenen JLJ (2001) Ballistic protection mechanisms in personal armour. J Mater Sci 36:3137–3142. https://doi.org/10.1023/A:1017922000090
Yang W, Li Z-M, Shi W et al (2004) Review on auxetic materials. J Mater Sci 39:3269–3279. https://doi.org/10.1023/B:JMSC.0000026928.93231.e0
Bianchi M, Scarpa F, Smith CW (2008) Stiffness and energy dissipation in polyurethane auxetic foams. J Mater Sci 43:5851–5860. https://doi.org/10.1007/s10853-008-2841-5
Ali MN, Busfield JJC, Rehman IU (2013) Auxetic oesophageal stents: structure and mechanical properties. J Mater Sci Mater Med 25:527–553. https://doi.org/10.1007/s10856-013-5067-2
Grima JN, Williams JJ, Evans KE (2005) Networked calix[4]arene polymers with unusual mechanical properties. Chem Commun 1:4065–4067. https://doi.org/10.1039/b505839b
Sanami M, Ravirala N, Alderson KL, Alderson A (2014) Auxetic materials for sports applications. Procedia Eng 72:453–458. https://doi.org/10.1016/j.proeng.2014.06.079
Grima JN, Gatt R (2010) Perforated sheets exhibiting negative Poisson’s ratios. Adv Eng Mater 12:460–464. https://doi.org/10.1002/adem.201000005
Milton GW, Cherkaev AV (1995) Which elasticity tensors are realizable? J Eng Mater Technol 117:483–493. https://doi.org/10.1115/1.2804743
Grima JN, Alderson A, Evans KE (2005) Auxetic behaviour from rotating rigid units. Phys Status Solidi B 242:561–575. https://doi.org/10.1002/pssb.200460376
Nye JF (1964) Physical properties of crystals: Their representation by tensors and matrices. Oxford University Press, Oxford
Evans KE, Nkansah MA, Hutchinson IJ, Rogers S (1991) Molecular network design. Nature 353:124. https://doi.org/10.1038/353124a0
Grima JN, Zerafa C, Brincat J-P (2014) Development of novel poly(phenylacetylene) network polymers and their mechanical behaviour. Phys Status Solidi B 251:375–382. https://doi.org/10.1002/pssb.201384254
Grima JN, Degabriele EP, Attard D (2016) Nano networks exhibiting negative linear compressibility. Phys Status Solidi B 253:1419–1427. https://doi.org/10.1002/pssb.201600276
Formosa JP, Cauchi R, Grima JN (2015) Carbon allotropes exhibiting negative linear compressibility. Phys Status Solidi B 252:1656–1663. https://doi.org/10.1002/pssb.201552234
Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909. https://doi.org/10.1021/j100389a010
Rappe AK, Goddard WA (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363. https://doi.org/10.1021/j100161a070
Hautman J, Klein ML (1992) An Ewald summation method for planar surfaces and interfaces. Mol Phys 75:379–395. https://doi.org/10.1080/00268979200100301
Rappe AK, Casewit CJ, Colwell KS et al (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035. https://doi.org/10.1021/ja00051a040
Walker PL (1990) Carbon: an old but new material revisited. Carbon 28:261–279. https://doi.org/10.1016/0008-6223(90)90001-F
Hunter CA, Sanders JKM (1990) The nature of Pi-Pi interactions. J Am Chem Soc 112:5525–5534. https://doi.org/10.1021/ja00170a016
Huang C, Chen L (2016) Negative Poisson’s ratio in modern functional materials. Adv Mater 28:8079–8096. https://doi.org/10.1002/adma.201601363
Ortiz AU, Boutin A, Fuchs AH, Coudert F-X (2012) Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? Phys Rev Lett 109:195502. https://doi.org/10.1103/PhysRevLett.109.195502
Ortiz AU, Boutin A, Coudert F-X (2014) Prediction of flexibility of metal-organic frameworks CAU-13 and NOTT-300 by first principles molecular simulations. Chem Commun 50:5867–5870. https://doi.org/10.1039/c4cc00734d
Huang CW, Ren W, Nguyen VC et al (2012) Abnormal Poisson’s ratio and linear compressibility in perovskite materials. Adv Mater 24:4170–4174. https://doi.org/10.1002/adma.201104676
Ogborn JM, Collings IE, Moggach SA et al (2012) Supramolecular mechanics in a metal–organic framework. Chem Sci 3:3011–3017. https://doi.org/10.1039/c2sc20596c
Serra-Crespo P, Dikhtiarenko A, Stavitski E et al (2014) Experimental evidence of negative linear compressibility in the MIL-53 metal–organic framework family. CrystEngComm 17:276–280. https://doi.org/10.1039/c4ce00436a
Bennett TD, Cheetham AK (2014) Amorphous metal-organic frameworks. Acc Chem Res 47:1555–1562. https://doi.org/10.1021/ar5000314
Coudert F-X (2015) Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem Mater 27:1905–1916. https://doi.org/10.1021/acs.chemmater.5b00046
Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444. https://doi.org/10.1126/science.1230444
Grima JN, Gatt R, Alderson A, Evans KE (2006) An alternative explanation for the negative Poisson’s ratios in alpha-cristobalite. Mater Sci Eng A 423:219–224. https://doi.org/10.1016/j.msea.2005.08.230
Acknowledgements
This work was funded by the University of Malta.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Caruana-Gauci, R., Degabriele, E.P., Attard, D. et al. Auxetic metamaterials inspired from wine-racks. J Mater Sci 53, 5079–5091 (2018). https://doi.org/10.1007/s10853-017-1875-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-017-1875-y


