Mechanically ductile 3D spsp 2 microporous carbon

Abstract

A new spsp 2-hybridized tetragonal carbon allotrope, namely Tetra-carbon, is predicted through the evolutionary particle swarm structural search. Tetra-carbon has a 3D framework composed of sp 2 carbon helixes connected by linear sp carbon chains, similar to the interconnected network of propadienyl groups, which forms the well-proportioned microporous structure. Tetra-carbon is thermodynamically more stable than known graphdiyne and carbyne carbon and also shows mechanical and dynamic stabilities at ambient pressure. Tetra-carbon is a semiconductor with an indirect band gap of 3.27 eV and has anisotropic tensile strengths with an unexpected large tensile strain of 0.64 along the [001] direction. Base on the analysis of Poisson’s ratios as well as the tensile strains, it is significantly revealed that Tetra-carbon is a mechanically ductile microporous carbon allotrope in contrast with the known brittle carbons such as diamond, potentially applied in the fields where the ductile metals are available.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1

    Hu M, Pan Y, Luo K, He J, Yu D, Xu B (2015) Three dimensional graphdiyne polymers with tunable band gaps. Carbon 91:518–526

    Article  Google Scholar 

  2. 2

    Pan Y, Hu M, Ma M, Li Z, Gao Y, Xiong M, Gao G, Zhao Z, Tian Y, Xu B (2017) Multithreaded conductive carbon: 1D conduction in 3D carbon. Carbon 115:584–588

    Article  Google Scholar 

  3. 3

    Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46:3256–3258

    Article  Google Scholar 

  4. 4

    Kang B, Lee JY (2015) Electronic properties of α-graphyne nanotubes. Carbon 84:246–253

    Article  Google Scholar 

  5. 5

    Hu M, Jing Y, Zhang X (2015) Low thermal conductivity of graphyne nanotubes from molecular dynamics study. Phys Rev B 91:155408

    Article  Google Scholar 

  6. 6

    Wang J-T, Chen C, Li H-D, Mizuseki H, Kawazoe Y (2016) Three-dimensional carbon allotropes comprising phenyl rings and acetylenic chains in sp + sp2 hybrid networks. Sci Rep 6:24665-1–24665-9

    Google Scholar 

  7. 7

    Hongxia B, Mingwen Z, Yan X, Xiaopeng W, Hua P, Chunlei W, Xiangdong L (2012) Is yne-diamond a super-hard material? EPL 100:56003-p1–56003-p6

    Google Scholar 

  8. 8

    Hu M, Huang Q, Zhao Z, Xu B, Yu D, He J (2014) Superhard and high-strength yne-diamond semimetals. Diam Relat Mater 46:15–20

    Article  Google Scholar 

  9. 9

    Weimer M, Hieringer W, Della Sala F, Görling A (2005) Electronic and optical properties of functionalized carbon chains with the localized Hartree–Fock and conventional Kohn-Sham methods. Chem Phys 309:77–87

    Article  Google Scholar 

  10. 10

    Tabata H, Fujii M, Hayashi S, Doi T, Wakabayashi T (2006) Raman and surface-enhanced Raman scattering of a series of size-separated polyynes. Carbon 44:3168–3176

    Article  Google Scholar 

  11. 11

    Lucotti A, Tommasini M, Del Zoppo M, Castiglioni C, Zerbi G, Cataldo F, Casari C, Bassi AL, Russo V, Bogana M (2006) Raman and SERS investigation of isolated sp carbon chains. Chem Phys Lett 417:78–82

    Article  Google Scholar 

  12. 12

    Wang Y, Lv J, Zhu L, Ma Y (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82:094116-1–094116-8

    Article  Google Scholar 

  13. 13

    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  14. 14

    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  15. 15

    Segall M, Lindan PJ, Probert MA, Pickard C, Hasnip P, Clark S, Payne M (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744

    Article  Google Scholar 

  16. 16

    Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689–746

    Article  Google Scholar 

  17. 17

    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  18. 18

    Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774

    Article  Google Scholar 

  19. 19

    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215

    Article  Google Scholar 

  20. 20

    Heyd J, Scuseria GE, Ernzerhof M (2006) Erratum: “Hybrid functionals based on a screened Coulomb potential”[J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys 124:219906-1

    Article  Google Scholar 

  21. 21

    Ducéré J-M, Lepetit C, Chauvin R (2013) Carbo-graphite: structural, mechanical, and electronic properties. J Phys Chem C 117:21671–21681

    Article  Google Scholar 

  22. 22

    Wu Z-J, Zhao E-J, Xiang H-P, Hao X-F, Liu X-J, Meng J (2007) Crystal structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles. Phys Rev B 76:054115-1–054115-15

    Google Scholar 

  23. 23

    Li Z, Hu M, Ma M, Gao Y, Xu B, He J, Yu D, Tian Y, Zhao Z (2016) Superhard superstrong carbon clathrate. Carbon 105:151–155

    Article  Google Scholar 

  24. 24

    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  Google Scholar 

  25. 25

    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  26. 26

    Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843

    Article  Google Scholar 

  27. 27

    Xiaoju G, Li-Min W, Bo X, Zhongyuan L, Dongli Y, Julong H, Hui-Tian W, Yongjun T (2009) Unbinding force of chemical bonds and tensile strength in strong crystals. J Phys Condens Matter 21:485405-1–485405-5

    Article  Google Scholar 

  28. 28

    Lott WA, Christiansen WG (2010) Propadiene. J Pharm Sci 20:207–209

    Google Scholar 

  29. 29

    Scholten JP, Ploeg HJVD (1973) Polymerization of propadiene. IV. Kinetics and mechanism of polymerization under the influence of rhodium(I) complexes. J Polym Sci A 11:3205–3213

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (51421091, 51472213, 51332005, 51525205, and 51672238).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Hu, M., Pan, Y. et al. Mechanically ductile 3D spsp 2 microporous carbon. J Mater Sci 53, 4316–4322 (2018). https://doi.org/10.1007/s10853-017-1854-3

Download citation

Keywords

  • Butatriene
  • Graphdiyne
  • Carbon Allotropes
  • Carbyne Carbon
  • Large Tensile Strains