Mechanically ductile 3D spsp2 microporous carbon

  • Lingyu Liu
  • Meng Hu
  • Yilong Pan
  • Mei Xiong
  • Chao Liu
  • Yang Zhang
  • Kun Luo
  • Zhisheng Zhao
  • Guoying Gao
  • Dongli Yu
  • Julong He
Electronic materials

Abstract

A new spsp2-hybridized tetragonal carbon allotrope, namely Tetra-carbon, is predicted through the evolutionary particle swarm structural search. Tetra-carbon has a 3D framework composed of sp2 carbon helixes connected by linear sp carbon chains, similar to the interconnected network of propadienyl groups, which forms the well-proportioned microporous structure. Tetra-carbon is thermodynamically more stable than known graphdiyne and carbyne carbon and also shows mechanical and dynamic stabilities at ambient pressure. Tetra-carbon is a semiconductor with an indirect band gap of 3.27 eV and has anisotropic tensile strengths with an unexpected large tensile strain of 0.64 along the [001] direction. Base on the analysis of Poisson’s ratios as well as the tensile strains, it is significantly revealed that Tetra-carbon is a mechanically ductile microporous carbon allotrope in contrast with the known brittle carbons such as diamond, potentially applied in the fields where the ductile metals are available.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (51421091, 51472213, 51332005, 51525205, and 51672238).

References

  1. 1.
    Hu M, Pan Y, Luo K, He J, Yu D, Xu B (2015) Three dimensional graphdiyne polymers with tunable band gaps. Carbon 91:518–526CrossRefGoogle Scholar
  2. 2.
    Pan Y, Hu M, Ma M, Li Z, Gao Y, Xiong M, Gao G, Zhao Z, Tian Y, Xu B (2017) Multithreaded conductive carbon: 1D conduction in 3D carbon. Carbon 115:584–588CrossRefGoogle Scholar
  3. 3.
    Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46:3256–3258CrossRefGoogle Scholar
  4. 4.
    Kang B, Lee JY (2015) Electronic properties of α-graphyne nanotubes. Carbon 84:246–253CrossRefGoogle Scholar
  5. 5.
    Hu M, Jing Y, Zhang X (2015) Low thermal conductivity of graphyne nanotubes from molecular dynamics study. Phys Rev B 91:155408CrossRefGoogle Scholar
  6. 6.
    Wang J-T, Chen C, Li H-D, Mizuseki H, Kawazoe Y (2016) Three-dimensional carbon allotropes comprising phenyl rings and acetylenic chains in sp + sp2 hybrid networks. Sci Rep 6:24665-1–24665-9Google Scholar
  7. 7.
    Hongxia B, Mingwen Z, Yan X, Xiaopeng W, Hua P, Chunlei W, Xiangdong L (2012) Is yne-diamond a super-hard material? EPL 100:56003-p1–56003-p6Google Scholar
  8. 8.
    Hu M, Huang Q, Zhao Z, Xu B, Yu D, He J (2014) Superhard and high-strength yne-diamond semimetals. Diam Relat Mater 46:15–20CrossRefGoogle Scholar
  9. 9.
    Weimer M, Hieringer W, Della Sala F, Görling A (2005) Electronic and optical properties of functionalized carbon chains with the localized Hartree–Fock and conventional Kohn-Sham methods. Chem Phys 309:77–87CrossRefGoogle Scholar
  10. 10.
    Tabata H, Fujii M, Hayashi S, Doi T, Wakabayashi T (2006) Raman and surface-enhanced Raman scattering of a series of size-separated polyynes. Carbon 44:3168–3176CrossRefGoogle Scholar
  11. 11.
    Lucotti A, Tommasini M, Del Zoppo M, Castiglioni C, Zerbi G, Cataldo F, Casari C, Bassi AL, Russo V, Bogana M (2006) Raman and SERS investigation of isolated sp carbon chains. Chem Phys Lett 417:78–82CrossRefGoogle Scholar
  12. 12.
    Wang Y, Lv J, Zhu L, Ma Y (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82:094116-1–094116-8CrossRefGoogle Scholar
  13. 13.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  14. 14.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  15. 15.
    Segall M, Lindan PJ, Probert MA, Pickard C, Hasnip P, Clark S, Payne M (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744CrossRefGoogle Scholar
  16. 16.
    Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689–746CrossRefGoogle Scholar
  17. 17.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  18. 18.
    Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774CrossRefGoogle Scholar
  19. 19.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215CrossRefGoogle Scholar
  20. 20.
    Heyd J, Scuseria GE, Ernzerhof M (2006) Erratum: “Hybrid functionals based on a screened Coulomb potential”[J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys 124:219906-1CrossRefGoogle Scholar
  21. 21.
    Ducéré J-M, Lepetit C, Chauvin R (2013) Carbo-graphite: structural, mechanical, and electronic properties. J Phys Chem C 117:21671–21681CrossRefGoogle Scholar
  22. 22.
    Wu Z-J, Zhao E-J, Xiang H-P, Hao X-F, Liu X-J, Meng J (2007) Crystal structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles. Phys Rev B 76:054115-1–054115-15Google Scholar
  23. 23.
    Li Z, Hu M, Ma M, Gao Y, Xu B, He J, Yu D, Tian Y, Zhao Z (2016) Superhard superstrong carbon clathrate. Carbon 105:151–155CrossRefGoogle Scholar
  24. 24.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  25. 25.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  26. 26.
    Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843CrossRefGoogle Scholar
  27. 27.
    Xiaoju G, Li-Min W, Bo X, Zhongyuan L, Dongli Y, Julong H, Hui-Tian W, Yongjun T (2009) Unbinding force of chemical bonds and tensile strength in strong crystals. J Phys Condens Matter 21:485405-1–485405-5CrossRefGoogle Scholar
  28. 28.
    Lott WA, Christiansen WG (2010) Propadiene. J Pharm Sci 20:207–209Google Scholar
  29. 29.
    Scholten JP, Ploeg HJVD (1973) Polymerization of propadiene. IV. Kinetics and mechanism of polymerization under the influence of rhodium(I) complexes. J Polym Sci A 11:3205–3213Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina
  2. 2.Institut für MaterialwissenschaftTechnische Universität DarmstadtDarmstadtGermany
  3. 3.School of Materials Science and EngineeringJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations