Skip to main content

Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition

Abstract

The reduction in size of field-effect transistors (FETs) comprised of 3D semiconductors is confronted with the issues such as short-channel effects, tunneling effects and thermal dissipation. The emergence of transition metal dichalcogenides (TMDCs) atomic layers has opened up unprecedented opportunities for scaling down of the electronics in view of their unique layered-structure and excellent properties. TMDCs grown directly on high-k dielectric substrates are beneficial for fabricating high-performance FETs. Here, we demonstrate the direct growth of atomically thin MoS2 flakes on high-κ dielectric (HfO2) substrates via a chemical vapor deposition process. The morphology and structure of the as-grown materials were systemically investigated by optical microscope, atomic force microscope, Raman spectroscopy, photoluminescence, transmission electron microscope and X-ray photoelectron spectroscopy. The MoS2 flakes are approximately 5–10 µm in size with polycrystalline monolayer structure. The optical properties of the MoS2 flakes are also found to be substrate-dependent due to optical interference. In addition, back-gate FETs based on the as-grown MoS2 were fabricated and their performance was investigated. The results indicate that the n-type FETs show high on/off current ratio of ~ 106 and a carrier mobility of 9.75 cm2 V−1 s−1.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Ganapathi KL, Bhattacharjee S, Mohan S, Bhat N (2016) High-performance HfO2, back gated multilayer MoS2 transistors. IEEE Electron Device Lett 37(6):797–800

    Google Scholar 

  2. Haron NZ, Hamdioui S (2008) Why is CMOS scaling coming to an END? Design and test workshop, pp 98–103

  3. Skotnicki T, Hutchby JA, King TJ, Wong HSP, Boeuf F (2005) Toward the introduction of new materials and structural changes to improve mosfet performance. Circuits Devices Mag IEEE 21(1):16–26

    Article  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065):197–200

    Article  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  6. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of quantum hall effect and berry’s phase in graphene. Nature 438(7065):201–204

    Article  Google Scholar 

  7. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805

    Article  Google Scholar 

  8. Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B (2012) Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 3(2):887

    Article  Google Scholar 

  9. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10(4):1271–1275

    Article  Google Scholar 

  10. Lee HS, Min SW, Chang YG, Park MK, Nam T, Kim H, Ryu S, Im S (2012) MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12(7):3695–3700

    Article  Google Scholar 

  11. Kin Fai M, Keliang H, Changgu L, Gwan Hyoung L, James H, Heinz TF, Shan J (2013) Tightly bound trions in monolayer MoS2. Nat Mater 12(3):207–211

    Google Scholar 

  12. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6(3):147–150

    Article  Google Scholar 

  13. Das S, Chen HY, Penumatcha AV, Appenzeller J (2013) High performance multilayer MoS2 transistors with scandium contacts. Nano Lett 13(1):100–105

    Article  Google Scholar 

  14. Liu H, Ye PD (2012) MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron Device Lett 33(4):546–548

    Article  Google Scholar 

  15. Kaasbjerg K, Thygesen KS, Jacobsen KW (2012) Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys Rev B 85(11):115317

    Article  Google Scholar 

  16. Radisavljevic B, Kis A (2013) Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat Mater 12(9):815–820

    Article  Google Scholar 

  17. Jang C, Adam S, Chen JH, Williams ED, Das SS, Fuhrer MS (2008) Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering. Phys Rev Lett 101(14):146805

    Article  Google Scholar 

  18. Peng Y, Meng Z, Zhong C, Lu J, Yu W, Jia Y, Qian Y (2001) Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem Lett 30(8):772–773

    Article  Google Scholar 

  19. Lee Y-H, Zhang X-Q, Zhang W, Chang M-T, Lin C-T, Chang K-D, Yu YC, Wang JTW, Chang CS, Li LJ (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24(17):2320–2325

    Article  Google Scholar 

  20. Wu W, De D, Chang SC, Wang Y, Peng H, Bao J, Pei SS (2013) High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl Phys Lett 102(14):142106

    Article  Google Scholar 

  21. Tong X, Ashalley E, Lin F, Li H, Wang ZM (2015) Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett 7(3):203–218

    Article  Google Scholar 

  22. Perkgoz NK, Bay M (2016) Investigation of single-wall MoS2 monolayer flakes grown by chemical vapor deposition. Nano-Micro Lett 8(1):70–79

    Article  Google Scholar 

  23. Adam S, Hwang EH, Galitski VM, Das SS (2007) A self-consistent theory for graphene transport. Proc Natl Acad Sci USA 104(47):18392–18397

    Article  Google Scholar 

  24. Nourbakhsh A, Zubair A, Huang S, Ling X (2015) 15-nm channel length MoS2, FETs with single- and double-gate structures. Vlsi Technology IEEE T28-T29

  25. Song JG, Kim SJ, Woo WJ, Kim Y, Oh IK, Ryu GH, Lee Z, Lim JH, Park J, Kim H (2016) Effect of Al2O3 deposition on performance of top-gated monolayer MoS2 based field effect transistor. ACS Appl Mater Interfaces 8(41):28130–28135

    Article  Google Scholar 

  26. Na J, Joo MK, Shin M, Huh J, Kim JS, Piao M, Jin JE, Jang HK, Choi HJ, Shim JH (2014) Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation. Nanoscale 6(1):433–441

    Article  Google Scholar 

  27. Kim S, Konar A, Hwang WS, Lee JH, Lee J, Yang J, Jung C, Kim H, Yoo JB, Choi JY (2012) High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun 3(8):1011

    Article  Google Scholar 

  28. Li T, Wan B, Du G, Zhang B, Zeng Z (2015) Electrical performance of multilayer MoS2 transistors on high-κ Al2O3 coated si substrates. AIP Adv 5(5):210–315

    Google Scholar 

  29. Bergeron H, Sangwan VK, Mcmorrow JJ, Campbell GP, Balla I, Liu X, Bedzyk MJ, Marks TJ, Hersam MC (2017) Chemical vapor deposition of monolayer MoS2 directly on ultrathin Al2O3 for low-power electronics. Appl Phys Lett 110(9):099901

    Article  Google Scholar 

  30. Zhao M, Liu M, Dong Y, Zou C, Yang K, Yang Y, Zhang L, Huang S (2016) Epitaxial growth of two-dimensional SnSe2/MoS2 misfit heterostructures. J Mater Chem C 4:10215–10222

    Article  Google Scholar 

  31. Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson BI, Idrobo JC, Ajayan PM, Lou J (2013) Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12(8):754–759

    Article  Google Scholar 

  32. Am VDZ, Huang PY, Chenet DA, Berkelbach TC, You Y, Lee GH, Heinz TF, Reichman DR, Muller DA, Hone JC (2013) Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 12(6):554–561

    Article  Google Scholar 

  33. Mcdonnell S, Brennan B, Azcatl A, Lu N, Dong H, Buie C, Kim J, Hinkle CL, Kim MJ, Wallace RM (2013) HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano 7(11):10354–10361

    Article  Google Scholar 

  34. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie

    Google Scholar 

  35. Pirkle A, Mcdonnell S, Lee B, Kim J, Colombo L, Wallace RM (2010) The effect of graphite surface condition on the composition of Al2O3 by atomic layer deposition. Appl Phys Lett 97(8):082901

    Article  Google Scholar 

  36. Blake P, Hill EW, Castro Neto AH, Novoselov KS, Jiang D, Yang R, Booth TJ, Geim AK (2007) Making graphene visible. Appl Phys Lett 91(6):063124

    Article  Google Scholar 

  37. Jung I, Pelton M, Piner R, Dikin DA, Stankovich S, Watcharotone S, Martina Hausner A, Ruoff RS (2007) Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett 7(12):3569–3575

    Article  Google Scholar 

  38. Gao L, Ren W, Li F, Cheng HM (2008) Total color difference for rapid and accurate identification of graphene. ACS Nano 2(8):1625–1633

    Article  Google Scholar 

  39. Li H, Wu J, Huang X, Lu G, Yang J, Lu X, Xiong Q, Zhang H (2013) Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7(11):10344–10353

    Article  Google Scholar 

  40. Castellanosgomez A, Agraït N, Rubiobollinger G (2010) Optical identification of atomically thin dichalcogenide crystals. Appl Phys Lett 96(21):014507

    Google Scholar 

  41. Benameur MM, Radisavljevic B, Héron JS, Sahoo S, Berger H, Kis A (2011) Visibility of dichalcogenide nanolayers. Nanotechnology 22(12):125706

    Article  Google Scholar 

  42. Abergel DSL, Russell A, Fal’Ko VI (2008) Visibility of graphene flakes on a dielectric substrate. Appl Phys Lett 91(6):063125

    Article  Google Scholar 

  43. Chang K, Liu JT, Xia JB, Dai N (2007) Enhanced visibility of graphene: effect of one-dimensional photonic crystal. Appl Phys Lett 91(18):181906

    Article  Google Scholar 

  44. Jung I, Rhyee JS, Son JY, Ruoff RS, Rhee KY (2012) Colors of graphene and graphene-oxide multilayers on various substrates. Nanotechnology 23(2):025708

    Article  Google Scholar 

  45. Li H, Lu G, Yin Z, He Q, Li H, Zhang Q, Zhang H (2012) Optical identification of single- and few-layer MoS2 sheets. Small 8(5):682–686

    Article  Google Scholar 

  46. Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, Feng YP, Shen ZX (2007) Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 7(9):2758–2763

    Article  Google Scholar 

  47. Rubio-Bollinger G, Guerrero R, De Lara DP, Quereda J, Vaquero-Garzon L, Agraït N, Bratschitsch R, Castellanos-Gomez A (2015) Enhanced visibility of MoS2, MoSe2, WSe2 and black phosphorus: making optical identification of 2D semiconductors easier. Electronics 4(4):847–856

    Article  Google Scholar 

  48. Wang X, Gong Y, Shi G, Chow WL, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E (2014) Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 8(5):5125–5131

    Article  Google Scholar 

  49. Chang YH, Zhang W, Zhu Y, Han Y, Pu J, Chang JK, Hsu WT, Huang JK, Hsu CL, Chiu MH (2014) Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8(8):8582–8590

    Article  Google Scholar 

  50. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5):2695–2700

    Article  Google Scholar 

  51. Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan PH, Kan M (2013) Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett 13(8):3870–3877

    Article  Google Scholar 

  52. Peng H, Dang W, Cao J, Chen Y, Wu D, Zheng W, Li H, Shen ZX, Liu Z (2012) Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat Chem 4(4):281–286

    Article  Google Scholar 

  53. Yan R, Bertolazzi S, Brivio J, Fang T, Konar A, Birdwell AG, Nguyen NV, Kis A, Jena D, Xing HG (2013) Raman and photoluminescence study of dielectric and thermal effects on atomically thin MoS2. Materials Science 2013

  54. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14(12):3160–3163

    Article  Google Scholar 

  55. Zhang H, Geng J, Ott RT, Besser MF, Kramer MJ (2015) Effect of temperature on the nano/microstructure and mechanical behavior of nanotwinned ag films. Metall Mater Trans A 46(9):4078–4085

    Article  Google Scholar 

  56. Senthilkumar V, Le CT, Yong SK, Sim Y, Seong MJ, Jang JI (2014) Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers. Nano Res 7:1759–1768

    Article  Google Scholar 

  57. Zhang ZJ, Zhang J, Xue QJ (1994) Synthesis and characterization of a molybdenum disulfide nanocluster. J Phys Chem 98(49):246–255

    Article  Google Scholar 

  58. Yu Y, Li C, Liu Y, Su L, Zhang Y, Cao L (2013) Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Scientific Reports 3(5):1866

  59. Lu C, Liu WW, Li H, Tay BK (2014) A binder-free cnt network-MoS2 composite as a high performance anode material in lithium ion batteries. Chem Commun 50(25):3338–3340

    Article  Google Scholar 

  60. Zhan Y, Liu Z, Najmaei S, Ajayan PM, Lou J (2011) Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8(7):966–971

    Article  Google Scholar 

  61. Najmaei S, Amani M, Chin ML, Liu Z, Birdwell AG, O’Regan TP, Ajayan PM, Dubey M, Lou J (2014) Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 8(8):7930–7937

    Article  Google Scholar 

  62. Zhang Y, Ye J, Matsuhashi Y, Iwasa Y (2012) Ambipolar MoS2 thin flake transistors. Nano Lett 12(3):1136–1140

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61471270, 51420105002, 51672193, 51572199).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youqing Dong or Shaoming Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 366 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Zhang, L., Liu, M. et al. Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition. J Mater Sci 53, 4262–4273 (2018). https://doi.org/10.1007/s10853-017-1820-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1820-0

Keywords

  • MoS2 Flakes
  • Back-gate FETs
  • Transition Metal Dichalcogenides (TMDCs)
  • Hafnium
  • Electron Field-effect Mobility