Advertisement

Journal of Materials Science

, Volume 53, Issue 9, pp 6626–6636 | Cite as

Effects of thiophene substituents on hole-transporting properties of dipolar chromophores for perovskite solar cells

  • Jianyu Cui
  • Wei Rao
  • Weixia Hu
  • Zemin Zhang
  • Wei Shen
  • Ming Li
  • Rongxing He
Computation
  • 241 Downloads

Abstract

We present a theoretical investigation of thiophene substituent effects on the electrochemical properties of dipolar chromophores (TCNE, TCNE22 and TCNE24) as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). Herein, the material properties in crystalline phases are explored by using the first-principle calculations combined with Marcus theory. The results show that the increased number of thiophene substituents for TCNE, TCNE22 and TCNE24 results in a redshift of the absorption spectrum (27–46 nm). Furthermore, both TCNE22 and TCNE24 have maximum absorption peaks at a wavelength of 400 nm. Most importantly, the molecular planarity is improved effectively, which generates strong intermolecular face-to-face ππ packing interaction. The higher hole mobility of TCNE24 (2.069 × 10−1 cm2 V−1 s−1) with four thiophene substituents is obtained due to the face-to-face ππ packing. The new designed TCNE24 not only has excellent spectral property, but also has strong hole mobility. Therefore, TCNE24 is a promising organic small-molecule HTMs. Our work provides theoretical guidance for designing higher-performance HTMs in PSCs.

Notes

Acknowledgements

We acknowledge generous financial support from the Natural Science Foundation of China (21173169) and the Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601011).

Compliance with ethical standards

Conflicts of interest

The authors declare no competing financial interest.

Supplementary material

10853_2017_1810_MOESM1_ESM.doc (66 kb)
Supplementary material 1 (DOC 66 kb)

References

  1. 1.
    Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8(7):506–514CrossRefGoogle Scholar
  2. 2.
    Williams ST, Rajagopal A, Chueh C-C, Jen AKY (2016) Current challenges and prospective research for upscaling hybrid perovskite photovoltaics. J Phys Chem Lett 7(5):811–819CrossRefGoogle Scholar
  3. 3.
    Meng L, You J, Guo T-F, Yang Y (2015) Recent advances in the inverted planar structure of perovskite solar cells. Acc Chem Res 49(1):155–165CrossRefGoogle Scholar
  4. 4.
    Docampo P, Bein T (2016) A long-term view on perovskite optoelectronics. Acc Chem Res 49(2):339–346CrossRefGoogle Scholar
  5. 5.
    Malinauskas T, Saliba M, Matsui T, Daskeviciene M, Urnikaite S, Gratia P, Send R, Wonneberger H, Bruder I, Graetzel M (2016) Branched methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials for high-performance perovskite solar cells. Energy Environ Sci 9(5):1681–1686CrossRefGoogle Scholar
  6. 6.
    Cho KT, Paek S, Grancini G, Carmona CR, Gao P, Lee YH, Nazeeruddin MK (2017) Highly efficient perovskite solar cells with a compositional engineered perovskite/hole transporting material interface. Energy Environ Sci 10:621–627CrossRefGoogle Scholar
  7. 7.
    Gratia P, Magomedov A, Malinauskas T, Daskeviciene M, Abate A, Ahmad S, Grätzel M, Getautis V, Nazeeruddin MK (2015) A methoxydiphenylamine-substituted carbazole twin derivative: an efficient hole-transporting material for perovskite solar cells. Angew Chem Int Ed 54(39):11409–11413CrossRefGoogle Scholar
  8. 8.
    Rakstys K, Saliba M, Gao P, Gratia P, Kamarauskas E, Paek S, Jankauskas V, Nazeeruddin MK (2016) Highly efficient perovskite solar cells employing an easily attainable bifluorenylidene-based hole-transporting material. Angew Chem Int Ed 55(26):7464–7468CrossRefGoogle Scholar
  9. 9.
    Seo J, Noh JH, Seok SI (2016) Rational strategies for efficient perovskite solar cells. Acc Chem Res 49(3):562–572CrossRefGoogle Scholar
  10. 10.
    Chueh C-C, Li C-Z, Jen AK-Y (2015) Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ Sci 8(4):1160–1189CrossRefGoogle Scholar
  11. 11.
    Yu Z, Sun L (2015) Recent progress on hole-transporting materials for emerging organometal halide perovskite solar cells. Adv Energy Mater 5(12):1500213CrossRefGoogle Scholar
  12. 12.
    Ameen S, Rub MA, Kosa SA, Alamry KA, Akhtar MS, Shin HS, Seo HK, Asiri AM, Nazeeruddin MK (2016) Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. Chemsuschem 9(1):10–27CrossRefGoogle Scholar
  13. 13.
    Kim H, Lim K-G, Lee T-W (2016) Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ Sci 9(1):12–30CrossRefGoogle Scholar
  14. 14.
    Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398CrossRefGoogle Scholar
  15. 15.
    Jeon NJ, Lee HG, Kim YC, Seo J, Noh JH, Lee J, Seok SI (2014) o-Methoxy substituents in spiro-OMeTAD for efficient inorganic–organic hybrid perovskite solar cells. J Am Chem Soc 136(22):7837–7840CrossRefGoogle Scholar
  16. 16.
    Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240):1234–1237CrossRefGoogle Scholar
  17. 17.
    Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRefGoogle Scholar
  18. 18.
    Daskeviciene M, Paek S, Wang Z, Malinauskas T, Jokubauskaite G, Rakstys K, Cho KT, Magomedov A, Jankauskas V, Ahmad S (2017) Carbazole-based enamine: low-cost and efficient hole transporting material for perovskite solar cells. Nano Energy 32:551–557CrossRefGoogle Scholar
  19. 19.
    Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena J-P, Decoppet J-D, Zakeeruddin SM, Nazeeruddin MK, Grätzel M, Hagfeldt A (2016) Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci Adv 2(1):e1501170CrossRefGoogle Scholar
  20. 20.
    Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena J-P, Gao P, Scopelliti R, Mosconi E, Dahmen K-H (2016) A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat Energy 1:15017CrossRefGoogle Scholar
  21. 21.
    Xu B, Bi D, Hua Y, Liu P, Cheng M, Grätzel M, Kloo L, Hagfeldt A, Sun L (2016) A low-cost spiro [fluorene-9, 9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells. Energy Environ Sci 9(3):873–877CrossRefGoogle Scholar
  22. 22.
    Hawash Z, Ono LK, Raga SR, Lee MV, Qi Y (2015) Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films. Chem Mater 27(2):562–569CrossRefGoogle Scholar
  23. 23.
    Wang YK, Yuan ZC, Shi GZ, Li YX, Li Q, Hui F, Sun BQ, Jiang ZQ, Liao LS (2016) Dopant-free spiro-triphenylamine/fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability. Adv Funct Mater 26(9):1375–1381CrossRefGoogle Scholar
  24. 24.
    Kazim S, Ramos FJ, Gao P, Nazeeruddin MK, Grätzel M, Ahmad S (2015) A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells. Energy Environ Sci 8(6):1816–1823CrossRefGoogle Scholar
  25. 25.
    Huang C, Fu W, Li C-Z, Zhang Z, Qiu W, Shi M, Heremans P, Jen AK-Y, Chen H (2016) Dopant-free hole-transporting material with a C3h symmetrical truxene core for highly efficient perovskite solar cells. J Am Chem Soc 138(8):2528–2531CrossRefGoogle Scholar
  26. 26.
    Liu Y, Hong Z, Chen Q, Chen H, Chang WH, Yang YM, Song TB, Yang Y (2016) Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels. Adv Mater 28(3):440–446CrossRefGoogle Scholar
  27. 27.
    Wang Y, Zhu Z, Chueh C-C, Jen AKY, Chi Y (2017) Spiro-phenylpyrazole-9,9′-thioxanthene analogues as hole-transporting materials for efficient planar perovskite solar cells. Adv Energy Mater 7(19):1700823-n/aGoogle Scholar
  28. 28.
    Su P-Y, Huang L-B, Liu J-M, Chen Y-F, Xiao L-M, Kuang D-B, Mayor M, Su C-Y (2017) A multifunctional poly-N-vinylcarbazole interlayer in perovskite solar cells for high stability and efficiency: a test with new triazatruxene-based hole transporting materials. J Mater Chem A 5(5):1913–1918CrossRefGoogle Scholar
  29. 29.
    Za Li, Zhu Z, Chueh C-C, Jo SB, Luo J, Jang S-H, Jen AK-Y (2016) Rational design of dipolar chromophore as an efficient dopant-free hole-transporting material for perovskite solar cells. J Am Chem Soc 138(36):11833–11839CrossRefGoogle Scholar
  30. 30.
    Getmanenko YA, Hales JM, Balu M, Fu J, Zojer E, Kwon O, Mendez J, Thayumanavan S, Walker G, Zhang Q (2012) Characterisation of a dipolar chromophore with third-harmonic generation applications in the near-IR. J Mater Chem 22(10):4371–4382CrossRefGoogle Scholar
  31. 31.
    Zeng Z, Lee S, Son M, Fukuda K, Burrezo PM, Zhu X, Qi Q, Li R-W, Navarrete JTL, Ding J (2015) Push–pull type oligo (N-annulated perylene) quinodimethanes: chain length and solvent-dependent ground states and physical properties. J Am Chem Soc 137(26):8572–8583CrossRefGoogle Scholar
  32. 32.
    Deng W-Q, Sun L, Huang J-D, Chai S, Wen S-H, Han K-L (2015) Quantitative prediction of charge mobilities of π-stacked systems by first-principles simulation. Nat Protoc 10(4):632–642CrossRefGoogle Scholar
  33. 33.
    Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer I. J Chem Phys 24(5):966–978CrossRefGoogle Scholar
  34. 34.
    Hush N (1958) Adiabatic rate processes at electrodes. I. Energy-charge relationships. J Chem Phys 28(5):962–972CrossRefGoogle Scholar
  35. 35.
    Zhang X-Y, Zhao G-J (2012) Anisotropic charge transport in bisindenoanthrazoline-based n-type organic semiconductors. J Phys Chem C 116(26):13858–13864CrossRefGoogle Scholar
  36. 36.
    Wen S-H, Li A, Song J, Deng W-Q, Han K-L, Goddard WA III (2009) First-principles investigation of anistropic hole mobilities in organic semiconductors. J Phys Chem B 113(26):8813–8819CrossRefGoogle Scholar
  37. 37.
    Brédas J-L, Norton JE, Cornil J, Coropceanu V (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42(11):1691–1699CrossRefGoogle Scholar
  38. 38.
    Geng H, Peng Q, Wang L, Li H, Liao Y, Ma Z, Shuai Z (2012) Toward quantitative prediction of charge mobility in organic semiconductors: tunneling enabled hopping model. Adv Mater 24(26):3568–3572CrossRefGoogle Scholar
  39. 39.
    Ryno SM, Risko C, Brédas J-L (2014) Impact of molecular packing on electronic polarization in organic crystals: the case of pentacene vs TIPS-pentacene. J Am Chem Soc 136(17):6421–6427CrossRefGoogle Scholar
  40. 40.
    Shuai Z, Geng H, Xu W, Liao Y, André J-M (2014) From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. Chem Soc Rev 43(8):2662–2679CrossRefGoogle Scholar
  41. 41.
    Shuai Z, Wang L, Li Q (2011) Evaluation of charge mobility in organic materials: from localized to delocalized descriptions at a first-principles level. Adv Mater 23(9):1145–1153CrossRefGoogle Scholar
  42. 42.
    Wang L, Nan G, Yang X, Peng Q, Li Q, Shuai Z (2010) Computational methods for design of organic materials with high charge mobility. Chem Soc Rev 39(2):423–434CrossRefGoogle Scholar
  43. 43.
    Senthilkumar K, Grozema F, Bickelhaupt F, Siebbeles L (2003) Charge transport in columnar stacked triphenylenes: effects of conformational fluctuations on charge transfer integrals and site energies. J Chem Phys 119(18):9809–9817CrossRefGoogle Scholar
  44. 44.
    Kwiatkowski J, Nelson J, Li H, Bredas J, Wenzel W, Lennartz C (2008) Simulating charge transport in tris (8-hydroxyquinoline) aluminium (Alq 3). Phys Chem Chem Phys 10(14):1852–1858CrossRefGoogle Scholar
  45. 45.
    Yamada T, Sato T, Tanaka K, Kaji H (2010) Percolation paths for charge transports in N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (TPD). Org Electron 11(2):255–265CrossRefGoogle Scholar
  46. 46.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision D. 01. Gaussian Inc., Wallingford, CTGoogle Scholar
  47. 47.
    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247CrossRefGoogle Scholar
  48. 48.
    Jacquemin D, Perpete EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DG (2010) On the performances of the M06 family of density functionals for electronic excitation energies. J Chem Theory Comput 6(7):2071–2085CrossRefGoogle Scholar
  49. 49.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc Theory Comput Model (Theoretica Chimica Acta) 120(1):215–241Google Scholar
  50. 50.
    Zhang F, Yu P, Shen W, Li M, He R (2015) Effect of “push–pull” sensitizers with modified conjugation bridges on the performance of p-type dye-sensitized solar cells. RSC Adv 5(79):64378–64386CrossRefGoogle Scholar
  51. 51.
    Zhang F, Yu P, Xu Y, Shen W, Li M, He R (2016) Theoretical investigation of regeneration mechanism of the metal-free sensitizer in dye sensitized solar cells. Dyes Pigments 124((Supplement C)):156–164CrossRefGoogle Scholar
  52. 52.
    te Velde GT, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967CrossRefGoogle Scholar
  53. 53.
    Studio AD 1.7 (2006) Accelrys Software Inc., San Diego, CA, USAGoogle Scholar
  54. 54.
    Kim K-H, Jung DH, Kim D, Lee A, Choi K, Kim Y, Choi S-H (2011) Crystal structure prediction of organic materials: tests on the 1,4-diketo-3,6-diphenylpyrrolo(3,4-c)pyrrole and 1,4-diketo-3,6-bis(4′-dipyridyl)-pyrrolo-[3,4-c]pyrrole. Dyes Pigments 89(1):37–43CrossRefGoogle Scholar
  55. 55.
    Mighell AD, Ondik HM, Molino BB (1977) Crystal data space-group tables. J Phys Chem Ref Data 6(3):675–830CrossRefGoogle Scholar
  56. 56.
    Karfunkel HR, Gdanitz RJ (1992) Ab Initio prediction of possible crystal structures for general organic molecules. J Comput Chem 13(10):1171–1183CrossRefGoogle Scholar
  57. 57.
    Ie Y, Umemoto Y, Okabe M, Kusunoki T, Nakayama K-i PuY-J, Kido J, Tada H, Aso Y (2008) Electronegative oligothiophenes based on difluorodioxocyclopentene-annelated thiophenes: synthesis, properties, and n-type FET performances. Org Lett 10(5):833–836CrossRefGoogle Scholar
  58. 58.
    Rakstys K, Paek S, Gao P, Gratia P, Marszalek T, Grancini G, Cho KT, Genevicius K, Jankauskas V, Pisula W (2017) Molecular engineering of face-on oriented dopant-free hole transporting material for perovskite solar cells with 19% PCE. J Mater Chem A 5(17):7811–7815CrossRefGoogle Scholar
  59. 59.
    Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97(1):173–206CrossRefGoogle Scholar
  60. 60.
    Umemoto Y, Ie Y, Saeki A, Seki S, Tagawa S, Aso Y (2008) Electronegative oligothiophenes fully annelated with hexafluorocyclopentene: synthesis, properties, and intrinsic electron mobility. Org Lett 10(6):1095–1098CrossRefGoogle Scholar
  61. 61.
    Chi W-J, Li Z-S (2015) The theoretical investigation on the 4-(4-phenyl-4-α-naphthylbutadieny)-triphenylamine derivatives as hole transporting materials for perovskite-type solar cells. Phys Chem Chem Phys 17(8):5991–5998CrossRefGoogle Scholar
  62. 62.
    Chi W-J, Li Q-S, Li Z-S (2016) Exploring the electrochemical properties of hole transport materials with spiro-cores for efficient perovskite solar cells from first-principles. Nanoscale 8(11):6146–6154CrossRefGoogle Scholar
  63. 63.
    Jin R, Chang Y (2015) A theoretical study on photophysical properties of triphenylamine-cored molecules with naphthalimide arms and different π-conjugated bridges as organic solar cell materials. Phys Chem Chem Phys 17(3):2094–2103CrossRefGoogle Scholar
  64. 64.
    Sun F, Jin R (2014) Optical and charge transport properties of N-butyl-1, 8-naphthalimide derivatives as organic light-emitting materials: a theoretical study. J Lumin 149:125–132CrossRefGoogle Scholar
  65. 65.
    Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12(28):7748–7757CrossRefGoogle Scholar
  66. 66.
    Chi W-J, Li Q-S, Li Z-S (2015) Effects of molecular configuration on charge diffusion kinetics within hole-transporting materials for perovskites solar cells. J Phys Chem C 119(16):8584–8590CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina

Personalised recommendations