Skip to main content
Log in

Controllable synthesis of Ho-doped In2O3 porous nanotubes by electrospinning and their application as an ethanol gas sensor

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pure and Ho-doped In2O3 nanotubes (NTs) and porous nanotubes (PNTs) were successfully synthesized by conventional electrospinning process and the following calcination at different temperatures. X-ray diffractometry (XRD), thermogravimetric analysis (TGA), Raman spectrometer, energy-dispersive spectroscopy, scanning and transmission electron microscopy were carefully used to investigate the morphologies, structures and chemical compositions of these samples. Their sensing properties toward ethanol gas were studied. Compared with pure In2O3 NTs (response value is 17), pure In2O3 PNTs (response value is 20) demonstrated enhanced sensing characteristics. What’s more, the response of Ho-doped In2O3 PNTs sensors to 100 ppm ethanol was up to 60 at 240 °C, which increased three times more than that of the pure In2O3 PNTs. Additionally, the minimum concentration for ethanol was 200 ppb (response value is 2). The increased gas-sensing ability was attributed not only to the hollow and porous structure, but to the Ho dopant. Furthermore, Ho-doped In2O3 PNTs enable sensor to discriminate between ethanol and the other gas distinctly, particularly acetone that is usually indistinguishable from ethanol. Also, by analyzing XRD, TGA and Raman spectrometer, a possible formation mechanism of porous nanotubes and sensing mechanism were put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Guo L, Shen X, Zhu G, Chen K (2011) Sens Actuators B Chem 155:752. https://doi.org/10.1016/j.snb.2011.01.042

    Article  Google Scholar 

  2. Wagner T, Haffer S, Weinberger C, Klaus D, Tiemann M (2013) Chem Soc Rev 42:4036. https://doi.org/10.1039/C2CS35379B

    Article  Google Scholar 

  3. Katoch A, Abideen ZU, Kim J-H, Kim SS (2016) Sens Actuators B Chem 232:698. https://doi.org/10.1016/j.snb.2016.04.013

    Article  Google Scholar 

  4. Katoch A, Choi S-W, Kim SS (2014) Nanotechnology 25:455504. https://doi.org/10.1088/0957-4484/25/45/455504

    Article  Google Scholar 

  5. Espinosa EH, Ionescu R, Bittencourt C et al (2007) Thin Solid Films 515:8322. https://doi.org/10.1016/j.tsf.2007.03.017

    Article  Google Scholar 

  6. Kaniyoor A, Imran Jafri R, Arockiadoss T, Ramaprabhu S (2009) Nanoscale 1:382. https://doi.org/10.1039/b9nr00015a

    Article  Google Scholar 

  7. Qian LH, Wang K, Li Y, Fang HT, Lu QH, Ma XL (2006) Mater Chem Phys 100:82. https://doi.org/10.1016/j.matchemphys.2005.12.009

    Article  Google Scholar 

  8. Feng C, Li W, Li C et al (2012) Sens Actuators B Chem 166–167:83. https://doi.org/10.1016/j.snb.2011.12.083

    Article  Google Scholar 

  9. Okamoto A, Shibasaki I (2003) J Cryst Growth 251:560. https://doi.org/10.1016/S0022-0248(02)02448-X

    Article  Google Scholar 

  10. Bloor LG, Manzi J, Binions R et al (2012) Chem Mater 24:2864. https://doi.org/10.1021/cm300596c

    Article  Google Scholar 

  11. Chikhale LP, Patil JY, Rajgure AV, Shaikh FI, Mulla IS, Suryavanshi SS (2014) Ceram Int 40:2179. https://doi.org/10.1016/j.ceramint.2013.07.136

    Article  Google Scholar 

  12. Habibzadeh S, Khodadadi AA, Mortazavi Y (2010) Sens Actuators B Chem 144:131. https://doi.org/10.1016/j.snb.2009.10.047

    Article  Google Scholar 

  13. Qin W, Xu L, Song J, Xing R, Song H (2013) Sens Actuators B Chem 185:231. https://doi.org/10.1016/j.snb.2013.05.001

    Article  Google Scholar 

  14. Che G, Lakshmi BB, Martin CR, Fisher ER, Ruoff RS (1998) Chem Mater 10:260

    Article  Google Scholar 

  15. Tao X, Sun L, Li Z, Zhao Y (2009) Nanoscale Res Lett 5:383. https://doi.org/10.1007/s11671-009-9493-5

    Article  Google Scholar 

  16. Lakshmi BB, Patrissi CJ, Martin CR (1997) Chem Mater 9:2544. https://doi.org/10.1021/cm970268y

    Article  Google Scholar 

  17. Xu L, Song H, Dong B, Wang Y, Chen J, Bai X (2010) Inorg Chem 49:10590. https://doi.org/10.1021/ic101602a

    Article  Google Scholar 

  18. Xu L, Dong B, Wang Y, Bai X, Liu Q, Song H (2010) Sens Actuators B Chem 147:531. https://doi.org/10.1016/j.snb.2010.04.003

    Article  Google Scholar 

  19. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223. https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  Google Scholar 

  20. Azhari SJ, Diab MA (1998) Polym Degrad Stab 60:253. https://doi.org/10.1016/S0141-3910(97)00073-6

    Article  Google Scholar 

  21. Chen W-S, Huang D-A, Chen H-C et al (2009) Cryst Growth Des 9:4070. https://doi.org/10.1021/cg900297q

    Article  Google Scholar 

  22. Enhanced acetone sensing properties of Eu-In2O3 nanotubes with bumps (2016) Institution of Engineering and Technology, http://digital-library.theiet.org/content/journals/10.1049/mnl.2016.0235

  23. Kumar M, Singh VN, Singh F, Lakshmi KV, Mehta BR, Singh JP (2008) Appl Phys Lett 92:171907. https://doi.org/10.1063/1.2910501

    Article  Google Scholar 

  24. Olivia MB, Ariano DR, Cleocir JD, Alexandre JCL, Edson RL, Adenilson JC (2010) J Phys D Appl Phys 43:045401

    Article  Google Scholar 

  25. Gan J, Lu X, Wu J et al (2013) Sci Rep 3:1021. https://doi.org/10.1038/srep01021

    Article  Google Scholar 

  26. Dayal P, Kyu T (2006) J Appl Phys 100:043512

    Article  Google Scholar 

  27. Cho JS, Kang YC (2015) Small 11:4673

    Article  Google Scholar 

  28. Tu KN, Gösele U (2005) Appl Phys Lett 86:093111

    Article  Google Scholar 

  29. Yanping L, Zhihong L, Yuhu L, Zhiyong L, Qihou L (2014) Chin J Nonferrous Metals 24:221

    Google Scholar 

  30. Shaalan NM, Rashad M, Abdel-Rahim MA (2016) Mater Sci Semicond Process 56:260. https://doi.org/10.1016/j.mssp.2016.09.007

    Article  Google Scholar 

  31. Lim SK, Hwang S-H, Chang D, Kim S (2010) Sens Actuators B Chem 149:28. https://doi.org/10.1016/j.snb.2010.06.039

    Article  Google Scholar 

  32. Gao L, Cheng Z, Xiang Q, Zhang Y, Xu J (2015) Sens Actuators B Chem 208:436. https://doi.org/10.1016/j.snb.2014.11.053

    Article  Google Scholar 

  33. Zhang L-h, Wang S-l, Liu F-h (2015) J Electron Mater 44:3408. https://doi.org/10.1007/s11664-015-3905-3

    Article  Google Scholar 

  34. Guo X, Zhang J, Ni M, Liu L, Lian H, Wang H (2016) J Mater Sci Mater Electron 27:11262. https://doi.org/10.1007/s10854-016-5247-1

    Article  Google Scholar 

  35. Yu F, Wu Y, Ma J, Zhang C (2013) J Environ Sci 25:195. https://doi.org/10.1016/S1001-0742(12)60023-0

    Article  Google Scholar 

  36. Zhao C, Zhang G, Han W et al (2013) Cryst Eng Commun 15:6491. https://doi.org/10.1039/C3CE40962G

    Article  Google Scholar 

  37. Bagheri M, Khodadadi AA, Mahjoub AR, Mortazavi Y (2015) Sens Actuators B Chem 220:590. https://doi.org/10.1016/j.snb.2015.06.007

    Article  Google Scholar 

  38. Anand K, Kaur J, Singh RC, Thangaraj R (2017) Chem Phys Lett 670:37. https://doi.org/10.1016/j.cplett.2016.12.057

    Article  Google Scholar 

  39. Montazeri A, Jamali-Sheini F (2017) Sens Actuators B Chem 242:778. https://doi.org/10.1016/j.snb.2016.09.181

    Article  Google Scholar 

  40. Navale ST, Bandgar DK, Nalage SR et al (2013) Ceram Int 39:6453. https://doi.org/10.1016/j.ceramint.2013.01.074

    Article  Google Scholar 

  41. Sun P, Cai Y, Du S et al (2013) Sens Actuators B Chem 182:336. https://doi.org/10.1016/j.snb.2013.03.019

    Article  Google Scholar 

  42. Franke ME, Koplin TJ, Simon U (2006) Small 2:36. https://doi.org/10.1002/smll.200500261

    Article  Google Scholar 

  43. Singh S, Singh A, Yadav BC, Dwivedi PK (2013) Sens Actuators B Chem 177:730. https://doi.org/10.1016/j.snb.2012.11.096

    Article  Google Scholar 

  44. Hamedani NF, Mahjoub AR, Khodadadi AA, Mortazavi Y (2012) Sens Actuators B Chem 169:67. https://doi.org/10.1016/j.snb.2012.02.074

    Article  Google Scholar 

  45. Miller DR, Akbar SA, Morris PA (2014) Sens Actuators B Chem 204:250. https://doi.org/10.1016/j.snb.2014.07.074

    Article  Google Scholar 

  46. Anand K, Kaur J, Singh RC, Thangaraj R (2016) Ceram Int 42:10957. https://doi.org/10.1016/j.ceramint.2016.03.233

    Article  Google Scholar 

  47. An W, Wu X, Zeng XC (2008) J Phys Chem C 112:5747. https://doi.org/10.1021/jp711105d

    Article  Google Scholar 

  48. Cheng JP, Wang BB, Zhao MG, Liu F, Zhang XB (2014) Sens Actuators B Chem 190:78. https://doi.org/10.1016/j.snb.2013.08.098

    Article  Google Scholar 

  49. Belmonte JC, Manzano J, Arbiol J et al (2006) Sens Actuators B Chem 114:881. https://doi.org/10.1016/j.snb.2005.08.007

    Article  Google Scholar 

  50. Prabhu E, Gnanasekar KI, Ravindran TR, Jayaraman V, Gnanasekaran T (2014) J Electrochem Soc 161:B176. https://doi.org/10.1149/2.0451409jes

    Article  Google Scholar 

Download references

Acknowledgements

The work has been supported by the Jilin Provincial Science and Technology Department (No. 20170101199JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Wang, Y., Li, S. et al. Controllable synthesis of Ho-doped In2O3 porous nanotubes by electrospinning and their application as an ethanol gas sensor. J Mater Sci 53, 3267–3279 (2018). https://doi.org/10.1007/s10853-017-1796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1796-9

Keywords

Navigation