Skip to main content
Log in

Magnetocaloric effect in Mn1−x CoGeSi x alloys

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A comprehensive study of the magnetic transition, magnetocaloric effect, critical behavior, and universal behavior for Mn1−x CoGeSi x (x = 0.02, 0.04, 0.06, and 0.08) system is reported. The Curie temperature increases from 270 to 289 K as the Si doping increases, while the maximum magnetic entropy change (|ΔS M|) decreases from 3.08 to 2.67 J/kg K (5 T), consistent with the shift of magnetic moment. Various techniques are used to determine the critical exponents and confirm the validity of the obtained critical exponents, revealing long-range interactions in this system. The Landau theory and universal behavior are used to evidence the second-order nature of the transition. Moreover, the new method to estimate the spontaneous magnetization estimated from the magnetic entropy change is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Pecharsky VK, Gschneidner KA Jr (1997) Giant Magnetocaloric Effect in Gd5Si2Ge2. Phys Rev Lett 78:4494

    Article  Google Scholar 

  2. Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152

    Article  Google Scholar 

  3. Fujita A, Fujieda S, Hasegawa Y, Fukamichi K (2003) Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(Fe x Si1−x )13 compounds and their hydrides. Phys Rev B 67:104416

    Article  Google Scholar 

  4. Dubenko I, Khan M, Pathak AK, Gautam BR, Stadler S, Ali N (2009) Magnetocaloric effects in Ni–Mn–X based Heusler alloys with X = Ga, Sb. J Magn Magn Mater 321:754–757

    Article  Google Scholar 

  5. Wada H, Tanabe Y (2001) Giant magnetocaloric effect of MnAs1−x Sb x . Appl Phys Lett 79(20):3302–3304

    Article  Google Scholar 

  6. Guo ZB, Du YW, Zhu JS, Huang H, Ding WP, Feng D (1997) Large magnetic entropy change in perovskite-type manganese oxides. Phys Rev Lett 78(6):1142

    Article  Google Scholar 

  7. Wang X, Wang L, Ma Q, Sun G, Cui J (2017) Magnetic phase transitions and large magnetocaloric effects in equiatomic binary DyZn compound. J Alloy Compd 694:613–616

    Article  Google Scholar 

  8. Wang C, Hu Y, Hu Q, Chen F, Zhang M, He X, Wang D, Cao Q, Du Y (2017) Successive magnetic phase transitions and magnetocaloric effect in the MnNiFeGe alloy. J Magn Magn Mater 439:13–16

    Article  Google Scholar 

  9. Wang L, Sun D, Wang R, Zhu Y, Lu Z, Xiong R, Liu Y, Shi J (2016) Phase transition and critical behaviors of spin-orbital coupling spinel compound CdV2O4. J Appl Phys 119(9):093908

    Article  Google Scholar 

  10. Han H, Zhang L, Zhu XD, Du HF, Ge M, Ling LS, Pi L, Zhang CJ, Zhang YH (2017) Critical phenomenon in the itinerant ferromagnet Cr11Ge19 studied by scaling of the magnetic entropy change. J Alloy Compd 693:389–393

    Article  Google Scholar 

  11. Zhang L, Han H, Qu Z, Fan J, Ling L, Zhang C, Pi L, Zhang Y (2014) Critical behavior of spinel MnV2O4 investigated by dc-magnetization. J Appl Phys 115(23):233910

    Article  Google Scholar 

  12. Kanomat T, Ishigaki H, Suzuki T, Yoshida H, Abe S, Kaneko T (1995) Magneto-volume effect of MnCo1-x Ge(0 ≤ x ≤ 0.2). J Magn Magn Mater 140(3):131–132

    Article  Google Scholar 

  13. Nizioł S, Wesełucha A, Bażela W, Szytuła A (1981) Magnetic properties of the Co x Ni1−x MnGe system. Solid State Commun 39(10):1081–1085

    Article  Google Scholar 

  14. Zhang H, Li YW, Liu EK, Tao K, Wu ML, Wang YX, Zhou HB, Xue YJ, Cheng C, Yan T, Long KW, Long Y (2017) Multiple magnetic transitions in MnCo1−x Cu x Ge driven by changes in atom separation and exchange interaction. Mater Des 114:531–536

    Article  Google Scholar 

  15. Ren QY, Hutchison WD, Wang JL, Studer AJ, Campbell SJ (2017) First-order magneto-structural transition and magnetocaloric effect in Mn(Co0.96Fe0.04)Ge. J Alloy Compd 693:32–39

    Article  Google Scholar 

  16. Quintana-Nedelcos A, Llamazares JLS, Flores-Zuñiga H (2015) On the magnetostructural transition in MnCoGeB x alloy ribbons. J Alloy Compd 644:1003–1008

    Article  Google Scholar 

  17. Wang GF, Zhao ZR, Zhang XF (2015) Influence of demagnetizing field on the magnetocaloric effect and critical behavior in Mn39Co26Ge35. J Alloy Compd 651:72–77

    Article  Google Scholar 

  18. Li YW, Zhang H, Tao K, Wang YX, Wu ML, Long Y (2017) Giant magnetocaloric effect induced by reemergence of magnetostructural coupling in Si-doped Mn0.95CoGe compounds. Mater Des 114:410–415

    Article  Google Scholar 

  19. Liu Y, Shen FR, Zhang M, Bao LF, Wu RR, Zhao YY, Hu FX, Wang J, Zuo WL, Sun JR, Shen BG (2015) Stress modulated martensitic transition and magnetocaloric effect in hexagonal Ni2In-type MnCoGe1−x In x alloys. J Alloy Compd 649:1048–1052

    Article  Google Scholar 

  20. Trung NT, Biharie V, Zhang L, Caron L, Buschow KHJ, Brück E (2010) From single- to double-first-order magnetic phase transition in magnetocaloric Mn1−x Cr x CoGe compounds. Appl Phys Lett 96(16):162507

    Article  Google Scholar 

  21. Samanta T, Dubenko I, Quetz A, Stadler S (2013) Ali N (2013) Large magnetocaloric effects over a wide temperature range in MnCo1−x Zn x Ge. J Appl Phys 113:17A922

    Article  Google Scholar 

  22. Bao LF, Hu FX, Wu RR, Wang J, Chen L, Sun JR, Shen BG, Li L, Zhang B, Zhang XX (2014) Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1−x Al x compounds. J Phys D Appl Phys 47:055003

    Article  Google Scholar 

  23. Aryal A, Quetz A, Pandey S, Samanta T, Dubenko I, Hill M, Mazumdar D, Stadler S, Ali N (2017) Magnetostructural phase transitions and magnetocaloric effects in as-cast Mn1−x Al x CoGe compounds. J Alloy Compd 709:142–146

    Article  Google Scholar 

  24. Liu YS, Zhong YB, Zhang JC, Ren ZM, Cao SX, Yang ZL, Gao T (2011) Structure and magnetic properties of MnZn nanoferrites synthesized under a high magnetic field. J Appl Phys 110(7):074310

    Article  Google Scholar 

  25. Si XD, Liu YS, Lu XF, Wang WL, Lei W, Lin J, Zhou T, Xu Y (2016) Effects of the substitution of Al for Mn on structure, magnetic, and magnetocaloric properties in MnCoGe. J Appl Phys 119:215104

    Article  Google Scholar 

  26. Si XD, Liu YS, Lu XF, Shen YL, Wang WL, Yu WY, Zhou T, Gao T (2017) Near room temperature magnetocaloric properties and the universal curve of MnCoGe1−x Cu x . J Appl Phys 121:185103

    Article  Google Scholar 

  27. Li GJ, Liu EK, Zhang HG, Zhang YJ, Chen JL, Wang WH, Zhang HW, Wu GH, Yu SY (2013) Phase diagram, ferromagnetic martensitic transformation and magnetoresponsive properties of Fe-doped MnCoGe alloys. J Magn Magn Mater 332:146–150

    Article  Google Scholar 

  28. Liu EK, Zhu W, Feng L, Chen JL, Wang WH, Wu GH, Liu HY, Meng FB, Luo HZ, Li YX (2010) Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1−x CoGe alloys. EPL 91:17003

    Article  Google Scholar 

  29. Meng GH, Tegus O, Zhang WG, Song L, Huang JH (2010) Structural and magnetic properties of MnCo1−x V x Ge compounds. J Alloy Compd 497:14–16

    Article  Google Scholar 

  30. Ren QY, Hutchison WD, Wang JL, Pérez SM, Cadogan JM, Campbell SJ (2014) Magnetism and magnetocaloric effect of Mn0.98Fe0.02CoGe. Phys Stat Solidi A 211(5):1101–1105

    Article  Google Scholar 

  31. Banerjee SK (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12(1):16–17

    Article  Google Scholar 

  32. Amaral VS, Amaral JS (2004) Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials. J Magn Magn Mater 272–276:2104–2105

    Article  Google Scholar 

  33. Mohamed AEA, Vega V, Ipatov M, Ahmed AM, Hernando B (2016) Annealing temperature effect on magnetic and magnetocaloric properties of manganites. J Alloy Compd 665:394–403

    Article  Google Scholar 

  34. Stanley HE (1971) Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, New York

    Google Scholar 

  35. Kouvel JS, Fisher ME (1964) Detailed magnetic behavior of nickel near its curie point. Phys Rev 136(A6):A1626–A1632

    Article  Google Scholar 

  36. Arrott A, Noakes JE (1967) approximate equation of state for nickel near its critical temperature. Phys Rev Lett 19(14):786–789

    Article  Google Scholar 

  37. Kaul SN (1985) Static critical phenomena in ferromagnets with quenched disorder. J Magn Magn Mater 53(1–2):5–53

    Article  Google Scholar 

  38. Huang K (1987) Statistical mechanics, 2nd edn. Wiley, New York

    Google Scholar 

  39. Si XD, Zhou KY, Zhang R, Liu YS, Qi J (2017) Estimation of the spontaneous magnetization and the universal curve in MnCo1−x Nb x Ge alloys with long-range interactions. J Appl Phys 121(11):113902

    Article  Google Scholar 

  40. Debnath JC, Strydom AM, Shamba P, Wang JL, Dou SX (2013) Critical phenomena and estimation of the spontaneous magnetization by a magnetic entropy analysis in Mn0.96Nb0.04CoGe alloy. J Appl Phys 113(23):233903

    Article  Google Scholar 

  41. Shamba P, Wang JL, Debnath JC, Kennedy SJ, Zeng R, Md Din MF, Hong F, Cheng ZX, Studer AJ, Dou SX (2013) The magnetocaloric effect and critical behaviour of the Mn0.94Ti0.06CoGe alloy. J Phys: Condens Matter 25(5):056001

    Google Scholar 

  42. Si XD, Zhou KY, Zhang R, Liu YS, Qi J (2017) Magnetic phase transition and magnetocaloric properties of Mn1−x Sn x CoGe alloys. Phys Lett A 381(19):1693–1700

    Article  Google Scholar 

  43. Kang KH, Kim JH, Oh Y, Kim EJ, Yoon CS (2017) Critical behavior and magnetocaloric effect of Mn4.75Ge3(Co, Fe)0.25 alloys. J Alloy Compd 696:931–937

    Article  Google Scholar 

  44. Zheng TF, Shi YG, Fan JY, Shi DN, Tang SL, Lv LY, Zhong W (2013) Critical behavior and the universal curve for magnetocaloric effect in textured Mn5Ge32x Al x ribbons. J Appl Phys 113(17):17A944

    Article  Google Scholar 

  45. Shen CJ, Liu Q, Gong YY, Wang DH, Du YW (2014) Magnetic phase transition and magnetocaloric effect in Mn1−x Zn x CoGe alloys. Chin Phys B 23(9):097502

    Article  Google Scholar 

  46. Liu K, Ma SC, Zhang L, Huang YL, Hou YH, Zhang GQ, Fan WB, Wang YL, Wang Y, Cao J, Guo KX, Zhong ZC (2017) Tuning the magnetic transition and magnetocaloric effect in Mn1−x Cr x CoGe alloy ribbons. J Alloy Compd 690:663–668

    Article  Google Scholar 

  47. Aryal A, Quetz A, Pandey S, Samanta T, Dubenko I, Mazumdar D, Stadler S, Ali N (2016) Phase transitions and magnetocaloric and transport properties in off-stoichiometric GdNi2Mn x . J Appl Phys 119(4):043905

    Article  Google Scholar 

  48. Lai JW, Zheng ZG, Montemayor R, Zhong XC, Liu ZW, Zeng DC (2014) Magnetic phase transitions and magnetocaloric effect of MnCoGe1−x Si x . J Magn Magn Mater 372:86–90

    Article  Google Scholar 

  49. Oesterreicher H, Parker FT (1984) Magnetic cooling near Curie temperatures above 300 K. J Appl Phys 55(12):4336–4338

    Article  Google Scholar 

  50. Bonilla CM, Bartolomé F, García LM, Parra-Borderías M, Herrero-Albillos J, Franco V (2010) A new criterion to distinguish the order of magnetic transitions by means of magnetic measurements. J Appl Phys 107(9):09E131

    Article  Google Scholar 

  51. Franco V, Blázquez JS, Conde A (2006) Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl Phys Lett 89(22):222512

    Article  Google Scholar 

  52. Amaral JS, Silva NJO, Amaral VS (2010) Estimating spontaneous magnetization from a mean field analysis of the magnetic entropy change. J Magn Magn Mater 322:1569–1571

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (Nos. 11674215, 11374204), “ShuGuang” project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 13SG52), and Project of Science and Technology Commission of Shanghai Municipality (No. 14520501000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, X., Liu, Y., Shen, Y. et al. Magnetocaloric effect in Mn1−x CoGeSi x alloys. J Mater Sci 53, 3661–3671 (2018). https://doi.org/10.1007/s10853-017-1783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1783-1

Keywords