Abstract
A comprehensive study of the magnetic transition, magnetocaloric effect, critical behavior, and universal behavior for Mn1−x CoGeSi x (x = 0.02, 0.04, 0.06, and 0.08) system is reported. The Curie temperature increases from 270 to 289 K as the Si doping increases, while the maximum magnetic entropy change (|ΔS M|) decreases from 3.08 to 2.67 J/kg K (5 T), consistent with the shift of magnetic moment. Various techniques are used to determine the critical exponents and confirm the validity of the obtained critical exponents, revealing long-range interactions in this system. The Landau theory and universal behavior are used to evidence the second-order nature of the transition. Moreover, the new method to estimate the spontaneous magnetization estimated from the magnetic entropy change is verified.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Pecharsky VK, Gschneidner KA Jr (1997) Giant Magnetocaloric Effect in Gd5Si2Ge2. Phys Rev Lett 78:4494
Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152
Fujita A, Fujieda S, Hasegawa Y, Fukamichi K (2003) Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(Fe x Si1−x )13 compounds and their hydrides. Phys Rev B 67:104416
Dubenko I, Khan M, Pathak AK, Gautam BR, Stadler S, Ali N (2009) Magnetocaloric effects in Ni–Mn–X based Heusler alloys with X = Ga, Sb. J Magn Magn Mater 321:754–757
Wada H, Tanabe Y (2001) Giant magnetocaloric effect of MnAs1−x Sb x . Appl Phys Lett 79(20):3302–3304
Guo ZB, Du YW, Zhu JS, Huang H, Ding WP, Feng D (1997) Large magnetic entropy change in perovskite-type manganese oxides. Phys Rev Lett 78(6):1142
Wang X, Wang L, Ma Q, Sun G, Cui J (2017) Magnetic phase transitions and large magnetocaloric effects in equiatomic binary DyZn compound. J Alloy Compd 694:613–616
Wang C, Hu Y, Hu Q, Chen F, Zhang M, He X, Wang D, Cao Q, Du Y (2017) Successive magnetic phase transitions and magnetocaloric effect in the MnNiFeGe alloy. J Magn Magn Mater 439:13–16
Wang L, Sun D, Wang R, Zhu Y, Lu Z, Xiong R, Liu Y, Shi J (2016) Phase transition and critical behaviors of spin-orbital coupling spinel compound CdV2O4. J Appl Phys 119(9):093908
Han H, Zhang L, Zhu XD, Du HF, Ge M, Ling LS, Pi L, Zhang CJ, Zhang YH (2017) Critical phenomenon in the itinerant ferromagnet Cr11Ge19 studied by scaling of the magnetic entropy change. J Alloy Compd 693:389–393
Zhang L, Han H, Qu Z, Fan J, Ling L, Zhang C, Pi L, Zhang Y (2014) Critical behavior of spinel MnV2O4 investigated by dc-magnetization. J Appl Phys 115(23):233910
Kanomat T, Ishigaki H, Suzuki T, Yoshida H, Abe S, Kaneko T (1995) Magneto-volume effect of MnCo1-x Ge(0 ≤ x ≤ 0.2). J Magn Magn Mater 140(3):131–132
Nizioł S, Wesełucha A, Bażela W, Szytuła A (1981) Magnetic properties of the Co x Ni1−x MnGe system. Solid State Commun 39(10):1081–1085
Zhang H, Li YW, Liu EK, Tao K, Wu ML, Wang YX, Zhou HB, Xue YJ, Cheng C, Yan T, Long KW, Long Y (2017) Multiple magnetic transitions in MnCo1−x Cu x Ge driven by changes in atom separation and exchange interaction. Mater Des 114:531–536
Ren QY, Hutchison WD, Wang JL, Studer AJ, Campbell SJ (2017) First-order magneto-structural transition and magnetocaloric effect in Mn(Co0.96Fe0.04)Ge. J Alloy Compd 693:32–39
Quintana-Nedelcos A, Llamazares JLS, Flores-Zuñiga H (2015) On the magnetostructural transition in MnCoGeB x alloy ribbons. J Alloy Compd 644:1003–1008
Wang GF, Zhao ZR, Zhang XF (2015) Influence of demagnetizing field on the magnetocaloric effect and critical behavior in Mn39Co26Ge35. J Alloy Compd 651:72–77
Li YW, Zhang H, Tao K, Wang YX, Wu ML, Long Y (2017) Giant magnetocaloric effect induced by reemergence of magnetostructural coupling in Si-doped Mn0.95CoGe compounds. Mater Des 114:410–415
Liu Y, Shen FR, Zhang M, Bao LF, Wu RR, Zhao YY, Hu FX, Wang J, Zuo WL, Sun JR, Shen BG (2015) Stress modulated martensitic transition and magnetocaloric effect in hexagonal Ni2In-type MnCoGe1−x In x alloys. J Alloy Compd 649:1048–1052
Trung NT, Biharie V, Zhang L, Caron L, Buschow KHJ, Brück E (2010) From single- to double-first-order magnetic phase transition in magnetocaloric Mn1−x Cr x CoGe compounds. Appl Phys Lett 96(16):162507
Samanta T, Dubenko I, Quetz A, Stadler S (2013) Ali N (2013) Large magnetocaloric effects over a wide temperature range in MnCo1−x Zn x Ge. J Appl Phys 113:17A922
Bao LF, Hu FX, Wu RR, Wang J, Chen L, Sun JR, Shen BG, Li L, Zhang B, Zhang XX (2014) Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1−x Al x compounds. J Phys D Appl Phys 47:055003
Aryal A, Quetz A, Pandey S, Samanta T, Dubenko I, Hill M, Mazumdar D, Stadler S, Ali N (2017) Magnetostructural phase transitions and magnetocaloric effects in as-cast Mn1−x Al x CoGe compounds. J Alloy Compd 709:142–146
Liu YS, Zhong YB, Zhang JC, Ren ZM, Cao SX, Yang ZL, Gao T (2011) Structure and magnetic properties of MnZn nanoferrites synthesized under a high magnetic field. J Appl Phys 110(7):074310
Si XD, Liu YS, Lu XF, Wang WL, Lei W, Lin J, Zhou T, Xu Y (2016) Effects of the substitution of Al for Mn on structure, magnetic, and magnetocaloric properties in MnCoGe. J Appl Phys 119:215104
Si XD, Liu YS, Lu XF, Shen YL, Wang WL, Yu WY, Zhou T, Gao T (2017) Near room temperature magnetocaloric properties and the universal curve of MnCoGe1−x Cu x . J Appl Phys 121:185103
Li GJ, Liu EK, Zhang HG, Zhang YJ, Chen JL, Wang WH, Zhang HW, Wu GH, Yu SY (2013) Phase diagram, ferromagnetic martensitic transformation and magnetoresponsive properties of Fe-doped MnCoGe alloys. J Magn Magn Mater 332:146–150
Liu EK, Zhu W, Feng L, Chen JL, Wang WH, Wu GH, Liu HY, Meng FB, Luo HZ, Li YX (2010) Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1−x CoGe alloys. EPL 91:17003
Meng GH, Tegus O, Zhang WG, Song L, Huang JH (2010) Structural and magnetic properties of MnCo1−x V x Ge compounds. J Alloy Compd 497:14–16
Ren QY, Hutchison WD, Wang JL, Pérez SM, Cadogan JM, Campbell SJ (2014) Magnetism and magnetocaloric effect of Mn0.98Fe0.02CoGe. Phys Stat Solidi A 211(5):1101–1105
Banerjee SK (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12(1):16–17
Amaral VS, Amaral JS (2004) Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials. J Magn Magn Mater 272–276:2104–2105
Mohamed AEA, Vega V, Ipatov M, Ahmed AM, Hernando B (2016) Annealing temperature effect on magnetic and magnetocaloric properties of manganites. J Alloy Compd 665:394–403
Stanley HE (1971) Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, New York
Kouvel JS, Fisher ME (1964) Detailed magnetic behavior of nickel near its curie point. Phys Rev 136(A6):A1626–A1632
Arrott A, Noakes JE (1967) approximate equation of state for nickel near its critical temperature. Phys Rev Lett 19(14):786–789
Kaul SN (1985) Static critical phenomena in ferromagnets with quenched disorder. J Magn Magn Mater 53(1–2):5–53
Huang K (1987) Statistical mechanics, 2nd edn. Wiley, New York
Si XD, Zhou KY, Zhang R, Liu YS, Qi J (2017) Estimation of the spontaneous magnetization and the universal curve in MnCo1−x Nb x Ge alloys with long-range interactions. J Appl Phys 121(11):113902
Debnath JC, Strydom AM, Shamba P, Wang JL, Dou SX (2013) Critical phenomena and estimation of the spontaneous magnetization by a magnetic entropy analysis in Mn0.96Nb0.04CoGe alloy. J Appl Phys 113(23):233903
Shamba P, Wang JL, Debnath JC, Kennedy SJ, Zeng R, Md Din MF, Hong F, Cheng ZX, Studer AJ, Dou SX (2013) The magnetocaloric effect and critical behaviour of the Mn0.94Ti0.06CoGe alloy. J Phys: Condens Matter 25(5):056001
Si XD, Zhou KY, Zhang R, Liu YS, Qi J (2017) Magnetic phase transition and magnetocaloric properties of Mn1−x Sn x CoGe alloys. Phys Lett A 381(19):1693–1700
Kang KH, Kim JH, Oh Y, Kim EJ, Yoon CS (2017) Critical behavior and magnetocaloric effect of Mn4.75Ge3(Co, Fe)0.25 alloys. J Alloy Compd 696:931–937
Zheng TF, Shi YG, Fan JY, Shi DN, Tang SL, Lv LY, Zhong W (2013) Critical behavior and the universal curve for magnetocaloric effect in textured Mn5Ge32x Al x ribbons. J Appl Phys 113(17):17A944
Shen CJ, Liu Q, Gong YY, Wang DH, Du YW (2014) Magnetic phase transition and magnetocaloric effect in Mn1−x Zn x CoGe alloys. Chin Phys B 23(9):097502
Liu K, Ma SC, Zhang L, Huang YL, Hou YH, Zhang GQ, Fan WB, Wang YL, Wang Y, Cao J, Guo KX, Zhong ZC (2017) Tuning the magnetic transition and magnetocaloric effect in Mn1−x Cr x CoGe alloy ribbons. J Alloy Compd 690:663–668
Aryal A, Quetz A, Pandey S, Samanta T, Dubenko I, Mazumdar D, Stadler S, Ali N (2016) Phase transitions and magnetocaloric and transport properties in off-stoichiometric GdNi2Mn x . J Appl Phys 119(4):043905
Lai JW, Zheng ZG, Montemayor R, Zhong XC, Liu ZW, Zeng DC (2014) Magnetic phase transitions and magnetocaloric effect of MnCoGe1−x Si x . J Magn Magn Mater 372:86–90
Oesterreicher H, Parker FT (1984) Magnetic cooling near Curie temperatures above 300 K. J Appl Phys 55(12):4336–4338
Bonilla CM, Bartolomé F, García LM, Parra-Borderías M, Herrero-Albillos J, Franco V (2010) A new criterion to distinguish the order of magnetic transitions by means of magnetic measurements. J Appl Phys 107(9):09E131
Franco V, Blázquez JS, Conde A (2006) Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl Phys Lett 89(22):222512
Amaral JS, Silva NJO, Amaral VS (2010) Estimating spontaneous magnetization from a mean field analysis of the magnetic entropy change. J Magn Magn Mater 322:1569–1571
Acknowledgements
This work is supported by Natural Science Foundation of China (Nos. 11674215, 11374204), “ShuGuang” project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 13SG52), and Project of Science and Technology Commission of Shanghai Municipality (No. 14520501000).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Si, X., Liu, Y., Shen, Y. et al. Magnetocaloric effect in Mn1−x CoGeSi x alloys. J Mater Sci 53, 3661–3671 (2018). https://doi.org/10.1007/s10853-017-1783-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-017-1783-1


