Skip to main content
Log in

Varied crystalline orientation of anatase TiO2 nanotubes from [101] to [001] promoted by TiF6 2− ions and their enhanced photoelectrochemical performance

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, we report an ionic cross-linkage process of synthesizing [001] preferred oriented anatase TiO2 nanowires and nanotubes hybrid structure (TWTs) based on anodization method wherein varied amounts of TiF6 2− ions are added in synthetic process. We show how the TiF6 2− ions switch the growth direction of TWTs from [101] to [001] (denoted as T101WTs and T001WTs, respectively) and change their geometrical morphologies, i.e., small ionic radii TiF6 2− ions migrate and partly replace the TiO6 2− octahedra under electric field, which separate out and leave vacancies during annealing process, resulting in a reconstruction of TiO2. Importantly, absorption property and photoelectrochemical (PEC) performance of T001WTs exceed those of T101WTs. Furthermore, CdS QDs are assembled onto TWTs photoelectrodes by successive ionic layer adsorption and reaction technique. Likewise, T001WT/CdS presents superior absorption capability and enhanced PEC performance to those of T101WT/CdS. This could be attributed to their preponderances of improved light absorption capability and decreased electron recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Tanaka A, Teramura K, Hosokawa S, Kominami H, Tanaka T (2017) Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Chem Sci 8:2574–2580

    Article  Google Scholar 

  2. Bumajdad A, Madkour M, Abdel-Moneam Y, El-Kemary M (2014) Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J Mater Sci 49:1743–1754

    Article  Google Scholar 

  3. Nuño M, Ball RJ, Bowen CR, Kurchania R, Sharma GD (2015) Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coatings. J Mater Sci 50:4822–4835

    Article  Google Scholar 

  4. Li ZQ, Ding Y, Mo LE, Hu LH, Wu JH, Dai SY (2015) Fine tuning of nanocrystal and pore sizes of TiO2 submicrospheres toward high performance dye-sensitized solar cells. ACS Appl Mater Interfaces 7:22277–22283

    Article  Google Scholar 

  5. Lv P, Fu W, Mu Y, Sun H, Liu T, Wang J, Niu J, Li X, Liu L, Yang H (2015) Performance improvement by using ammonia water-synthesized TiO2 nanotubes with nanowire porous film mixed nanostructures. J Mater Chem A 3:16089–16096

    Article  Google Scholar 

  6. Ding D, Chen Y, Lv P, Yao H, Mu Y, Su S, Zhang X, Zhou L, Fu W, Yang H (2015) Efficient improvement of photoelectrochemical activity for multiple semiconductor (CdS/PbS/ZnS) co-sensitized TiO2 photoelectrodes by hydrogen treatment. RSC Adv 5:6462–6469

    Article  Google Scholar 

  7. Ding D, Zhou B, Feng S, Liu L, Feng F, Runa A, Su P, Wang J, Fu W, Yang H (2016) Controlled synthesis of highly reactive (111) facets exposed TiO2 nanocuboids decorated nanotubes and nanowires hybrid structure with enhanced photoelectrochemical properties. RSC Adv 6:91370–91376

    Article  Google Scholar 

  8. Lv P, Fu W, Yang H, Sun H, Chen Y, Ma J, Zhou X, Tian L, Zhang W, Li M, Yao H, Wu D (2013) Simple synthesis method of Bi2S3/CdS quantum dots cosensitized TiO2 nanotubes array with enhanced photoelectrochemical and photocatalytic activity. CrystEngComm 15:7548–7555

    Article  Google Scholar 

  9. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287:1471–1473

    Article  Google Scholar 

  10. Cai BY, Chan SK, Sou IK, Chan YF, Su DS, Wang N (2006) The size-dependent growth direction of ZnSe nanowires. Adv Mater 18:109–114

    Article  Google Scholar 

  11. Han N, Wang F, Hou JJ, Yip S, Lin H, Fang M, Xiu F, Shi X, Hung T, Ho JC (2012) Manipulated growth of GaAs nanowires: controllable crystal quality and growth orientations via a supersaturation-controlled engineering process. Cryst Growth Des 12:6243–6249

    Article  Google Scholar 

  12. Liu XH, Wang JW, Huang S, Fan F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh SA, Davydov AV, Mao SX, Picraux ST, Zhang S, Li J, Zhu T, Huang JY (2012) In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat Nanotechnol 7:749–756

    Article  Google Scholar 

  13. Kolíbal M, Pejchal T, Vystavel T, Šikola T (2016) The synergic effect of atomic hydrogen adsorption and catalyst spreading on Ge nanowire growth orientation and kinking. Nano Lett 16:4880–4886

    Article  Google Scholar 

  14. Han N, Yang Z-X, Wang F, Yip S, Li D, Hung TF, Chen Y, Ho JC (2016) Crystal orientation controlled photovoltaic properties of multilayer GaAs nanowire arrays. ACS Nano 10:6283–6290

    Article  Google Scholar 

  15. Lee SW, McDowell MT, Choi JW, Cui Y (2011) Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett 11:3034–3039

    Article  Google Scholar 

  16. You H, Wu Q, Li J, He S, Li X, Yang X, Yang J, Meng Y, Tong S, Wu M (2017) Hollow nanocubes constructed from <001> oriented anatase TiO2 nanoarrays: topotactic conversion and fast lithium-ion storage. CrystEngComm 19:2456–2463

    Article  Google Scholar 

  17. Stefanov B, Österlund L (2014) Tuning the photocatalytic activity of anatase TiO2 thin films by modifying the preferred <100> grain orientation with reactive DC magnetron sputtering. Coatings 4:587–601

    Article  Google Scholar 

  18. Ding S, Chen JS, Wang Z, Cheah YL, Madhavi S, Hu X, Lou XW (2011) TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. J Mater Chem 21:1677–1680

    Article  Google Scholar 

  19. Huang L, Zha K, Namuangruk S, Junkaew A, Zhao X, Li H, Shi L, Zhang D (2016) Promotional effect of the TiO2 (001) facet in the selective catalytic reduction of NO with NH3: in situ DRIFTS and DFT studies. Catal Sci Technol 6:8516–8524

    Article  Google Scholar 

  20. Cheah SK, Perre E, Rooth M, Fondell M, Harsta A, Nyholm L, Boman M, Gustafsson T, Lu J, Simon P, Edstrom K (2009) Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Lett 9:3230–3233

    Article  Google Scholar 

  21. Liu D, Zhang Y, Xiao P, Garcia BB, Zhang Q, Zhou X, Jeong YH, Cao G (2009) TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation. Electrochim Acta 54:6816–6820

    Article  Google Scholar 

  22. Ortiz GF, Hanzu I, Knauth P, Lavela P, Tirado JL, Djenizian T (2009) TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochim Acta 54:4262–4268

    Article  Google Scholar 

  23. Ortiz GF, Hanzu I, Djenizian T, Lavela P, Tirado JL, Knauth P (2009) Alternative li-ion battery electrode based on self-organized titania nanotubes. Chem Mater 21:63–67

    Article  Google Scholar 

  24. Wu QL, Li J, Deshpande RD, Subramanian N, Rankin SE, Yang F, Cheng YT (2012) Aligned TiO2 nanotube arrays as durable lithium-ion battery negative electrodes. J Phys Chem C 116:18669–18677

    Article  Google Scholar 

  25. Sang L, Tan H, Zhang X, Wu Y, Ma C, Burda C (2012) Effect of quantum dot deposition on the interfacial flatband potential, depletion layer in TiO2 nanotube electrodes and resulting H2 generation rates. J Phys Chem C 116:18633–18640

    Article  Google Scholar 

  26. Varghese OK, Gong DW, Paulose M, Grimes CA, Dickey EC (2003) Crystallization and High-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18:156–165

    Article  Google Scholar 

  27. Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, Macak JM, Schmuki P (2008) formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater 20:4135–4139

    Google Scholar 

  28. Ichimura AS, Mack BM, Usmani SM, Mars DG (2012) Direct synthesis of anatase films with ~ 100% (001) facets and [001] preferred orientation. Chem Mater 24:2324–2329

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Development Program of Jilin Province (Grant No. 20130206078GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2017_1754_MOESM1_ESM.doc

Fig. S1 Size analysis (length and width) for nanotubes of T101WTs and T001WTs. Fig. S2 SEM images of T101WTs and T001-2.5WTs before annealing. Fig. S3 EDS spectrum: (a) T101WTs before annealing, (b) T001WTs before annealing, (c) T001WTs after annealing. Fig. S4 UV–Vis absorption spectra of T101WTs and T001WTs. Fig. S5 JV curves, transient photocurrent responses results and photoconversion efficiencies of T101WTs and T001WTs, respectively. Fig. S6 Incident photon-to-current conversion efficiency (IPCE) and (B) absorbed photon-to-current conversion efficiency (APCE) for T101WTs and T001WTs electrodes. Fig. S7 SEM images of T101WTs/CdS. Figure S8 EDS data of T001WTs/CdS. (DOC 7403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Zhou, B., Fu, W. et al. Varied crystalline orientation of anatase TiO2 nanotubes from [101] to [001] promoted by TiF6 2− ions and their enhanced photoelectrochemical performance. J Mater Sci 53, 3332–3340 (2018). https://doi.org/10.1007/s10853-017-1754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1754-6

Keywords

Navigation