Skip to main content

Advertisement

Log in

Optimized core–shell polypyrrole-coated NiCo2O4 nanowires as binder-free electrode for high-energy and durable aqueous asymmetric supercapacitor

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cathode design is of essence for fabricating aqueous asymmetric supercapacitor (ASC) device accompanying with high energy density and long cycle life. Nickel cobaltite, owing to the high theoretical capacity and good redox reversibility, is one of the most promising cathode materials for ASC device. However, the poor conductivity and cycling stability lead to a low practical capacity. A novel core–shell structure polypyrrole-coated NiCo2O4 nanowires are rationally designed and synthesized via hydrothermal synthesis of the NiCo2O4 nanowires and subsequently electrodeposition of the polypyrrole (PPy) outer shell. By adjusting the PPy load mass, the optimized electrode shows a high specific capacitance (2302 F g−1 at 2 A g−1), excellent rate properties and enhanced cycling performance (93.9% retention of capacity after 5000 cycles). Furthermore, an ASC device based on the PPy-coated NiCo2O4 nanowires as cathode and activated carbon as anode demonstrates a high energy density of 45.6 Wh kg−1 at a power density of 362 W kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  Google Scholar 

  2. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  4. An CH, Wang YJ, Jiao LF, Yuan HT (2016) Mesoporous Ni@C hybrids for a high energy aqueous asymmetric supercapacitor device. J Mater Chem A 4:9670–9676

    Article  Google Scholar 

  5. Li Y, Chen C (2017) Polyaniline/carbon nanotubes-decorated activated carbon fiber felt as high-performance, free-standing and flexible supercapacitor electrodes. J Mater Sci 52:12348–12357. doi:10.1007/s10853-017-1291-3

    Article  Google Scholar 

  6. Jian X, Li JG, Yang HM, Cao LL, Zhang EH, Liang ZH (2017) Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors. Carbon 114:533–543

    Article  Google Scholar 

  7. Wang L, Yang CL, Dou S, Wang SY, Zhang JT, Gao X, Ma JM, Yu Y (2016) Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery. Electrochim Acta 219:592–603

    Article  Google Scholar 

  8. Song L, Cao X, Li L, Wang Q, Ye H, Gu L, Mao C, Song J, Zhang S, Niu H (2017) General method for large-area films of carbon nanomaterials and application of a self-assembled carbon nanotube film as a high-performance electrode material for an all-solid-state supercapacitor. Adv Funct Mater 27:1700474

    Article  Google Scholar 

  9. Sui YW, Zhang YM, Hou PH, Qi JQ, Wei FX, He YZ, Meng QK, Sun Z (2017) Three-dimensional NiCo2S4 nanosheets as high-performance electrodes materials for supercapacitors. J Mater Sci 52:7100–7109. doi:10.1007/s10853-017-0942-8

    Article  Google Scholar 

  10. Wei JS, Ding H, Zhang P, Song YF, Chen J, Wang YG, Xiong HM (2016) Carbon dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors. Small 12:5927–5934

    Article  Google Scholar 

  11. Liu Y, Wang Z, Zhong Y, Tade M, Zhou W, Shao Z (2017) Molecular design of mesoporous NiCo2O4 and NiCo2S4 with sub-micrometer-polyhedron architectures for efficient pseudocapacitive energy storage. Adv Funct Mater 27:1701229

    Article  Google Scholar 

  12. Zhang C, Geng X, Tang S, Deng M, Du Y (2017) NiCo2O4@rGO hybrid nanostructures on Ni foam as high-performance supercapacitor electrodes. J Mater Chem A 5:5912–5919

    Article  Google Scholar 

  13. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  Google Scholar 

  14. Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979

    Article  Google Scholar 

  15. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

    Article  Google Scholar 

  16. Pu J, Liu Z, Ma Z, Wang J, Zhang L, Chang S, Wu W, Shen Z, Zhang H (2016) Structure design of NiCo2O4 electrodes for high performance pseudocapacitors and lithium-ion batteries. J Mater Chem A 4:17394–17402

    Article  Google Scholar 

  17. Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2016) Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438

    Article  Google Scholar 

  18. Zhu J, Feng T, Du X, Wang J, Hu J, Wei L (2017) High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets. J Power Sources 346:120–127

    Article  Google Scholar 

  19. Du D, Wu X, Li S, Zhang Y, Xing W, Li L, Xue Q, Bai P, Yan Z (2017) Remarkable supercapacitor performance of petal-like LDHs vertically grown on graphene/polypyrrole nanoflakes. J Mater Chem A 5:8964–8971

    Article  Google Scholar 

  20. Fan XY, Wang XL, Li G, Yu AP, Chen ZW (2016) High-performance flexible electrode based on electrodeposition of polypyrrole/MnO2 on carbon cloth for supercapacitors. J Power Sources 326:357–364

    Article  Google Scholar 

  21. Long L, Yao Y, Yan M, Wang H, Zhang G, Kong M, Yang L, Liao X, Yin G, Huang Z (2017) Ni3S2@polypyrrole composite supported on nickel foam with improved rate capability and cycling durability for asymmetric supercapacitor device applications. J Mater Sci 52:3642–3656. doi:10.1007/s10853-016-0529-9

    Article  Google Scholar 

  22. Pattananuwat P, Aht-ong D (2017) Controllable morphology of polypyrrole wrapped graphene hydrogel framework composites via cyclic voltammetry with aiding of poly (sodium 4-styrene sulfonate) for the flexible supercapacitor electrode. Electrochim Acta 224:149–160

    Article  Google Scholar 

  23. Wang L, Yang H, Liu X, Zeng R, Li M, Huang Y, Hu X (2017) Constructing hierarchical tectorum-like alpha-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew Chem Int Ed 56:1105–1110

    Article  Google Scholar 

  24. Guan B, Shan QY, Chen H, Xue DF, Chen KF, Zhang YX (2016) Morphology dependent supercapacitance of nanostructured NiCo2O4 on graphitic carbon nitride. Electrochim Acta 200:239–246

    Article  Google Scholar 

  25. Kang HY, Liu YC, Shang MH, Lu TY, Wang YJ, Jiao LF (2015) NaV3O8 nanosheet@polypyrrole core–shell composites with good electrochemical performance as cathodes for Na-ion batteries. Nanoscale 7:9261–9267

    Article  Google Scholar 

  26. Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@Polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085

    Article  Google Scholar 

  27. Li L, Peng S, Cheah Y, Teh P, Wang J, Wee G, Ko Y, Wong C, Srinivasan M (2013) Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem Eur J 19:5892–5898

    Article  Google Scholar 

  28. Guan H, Shao C, Liu Y, Yu N, Yang X (2004) Fabrication of NiCo2O4 nanofibers by electrospinning. Solid State Commun 131:107–109

    Article  Google Scholar 

  29. Dubal DP, Patil SV, Jagadale AD, Lokhande CD (2011) Two step novel chemical synthesis of polypyrrole nanoplates for supercapacitor application. J Alloys Compd 509:8183–8188

    Article  Google Scholar 

  30. Zhang AQ, Xiao YH, Lu LZ, Wang LZ, Li F (2013) Polypyrrole/MnO2 composites and their enhanced electrochemical capacitance. J Appl Polym Sci 128:1327–1331

    Google Scholar 

  31. Xu C, Sun J, Gao L (2011) Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J Mater Chem 21:11253–11258

    Article  Google Scholar 

  32. Wang HL, Holt CMB, Li Z, Tan XH, Amirkhiz BS, Xu ZW, Olsen BC, Stephenson T, Mitlin D (2012) Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5:605–617

    Article  Google Scholar 

  33. Marco JF, Gancedo JR, Gracia M, Gautier JL, Rios E, Berry FJ (2000) Characterization of the nickel cobaltite, NiCo2O4 prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153:74–81

    Article  Google Scholar 

  34. Yuan CZ, Li JY, Hou LR, Yang L, Shen LF, Zhang XG (2012) Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors. J Mater Chem 22:16084–16090

    Article  Google Scholar 

  35. Dupin JC, Gonbeau D, Vinatier P, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324

    Article  Google Scholar 

  36. Wolfart F, Dubal DP, Vidotti M, Gomez-Romero P (2016) Hybrid core–shell nanostructured electrodes made of polypyrrole nanotubes coated with Ni(OH)2 nanoflakes for high energy-density supercapacitors. RSC Adv 6:15062–15070

    Article  Google Scholar 

  37. Xu K, Huang X, Liu Q, Zou R, Li W, Liu X, Li S, Yang J, Hu J (2014) Understanding the effect of polypyrrole and poly(3,4-ethylenedioxythiophene) on enhancing the supercapacitor performance of NiCo2O4 electrodes. J Mater Chem A 2:16731–16739

    Article  Google Scholar 

  38. Cao J, Wang Y, Chen J, Li X, Walsh FC, Ouyang JH, Jia D, Zhou Y (2015) Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. J Mater Chem A 3:14445–14457

    Article  Google Scholar 

  39. Ma FX, Yu L, Xu CY, Lou XW (2016) Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ Sci 9:862–866

    Article  Google Scholar 

  40. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    Article  Google Scholar 

  41. Lei Z, Zhang J, Zhao XS (2012) Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem 22:153–160

    Article  Google Scholar 

  42. Lee JS, Shin DH, Kim W, Jang J (2016) Highly ordered, polypyrrole-coated Co(OH)2 architectures for high-performance asymmetric supercapacitors. J Mater Chem A 4:6603–6609

    Article  Google Scholar 

  43. Huang J, Xu P, Cao D, Zhou X, Yang S, Li Y, Wang G (2014) Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density. J Power Sources 246:371–376

    Article  Google Scholar 

  44. Tang CH, Yin X, Gong H (2013) Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core–shell electrode. ACS Appl Mater Interfaces 5:10574–10582

    Article  Google Scholar 

  45. Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  Google Scholar 

  46. Zhang X, Zhao Y, Xu C (2014) Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. Nanoscale 6:3638–3646

    Article  Google Scholar 

  47. Li Z, Xu Z, Wang H, Ding J, Zahiri B, Holt CMB, Tan X, Mitlin D (2014) Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ Sci 7:1708–1718

    Article  Google Scholar 

  48. Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257

    Article  Google Scholar 

  49. Garakani MA, Abouali S, Xu ZL, Huang J, Kim JK (2017) Heterogeneous, mesoporous NiCo2O4–MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies. J Mater Chem A 5:3547–3557

    Article  Google Scholar 

  50. Chen GF, Li XX, Zhang LY, Li N, Ma TY, Liu ZQ (2016) A porous perchlorate-doped polypyrrole nanocoating on nickel nanotube arrays for stable wide-potential-window supercapacitors. Adv Mater 28:7680–7687

    Article  Google Scholar 

  51. Zhang Y, Wang B, Liu F, Cheng J, Zhang XW, Zhang L (2016) Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 27:627–637

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by MOST (2016YFA0202504), NSFC (51471089, 51501072), MOE (IRT13R30), NSFT (17JCYBJC17900) and 111 Project (B12015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijing Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., An, C., Chang, X. et al. Optimized core–shell polypyrrole-coated NiCo2O4 nanowires as binder-free electrode for high-energy and durable aqueous asymmetric supercapacitor. J Mater Sci 53, 2658–2668 (2018). https://doi.org/10.1007/s10853-017-1742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1742-x

Keywords

Navigation