Skip to main content
Log in

Chemical grafting of nano-TiO2 onto carbon fiber via thiol–ene click chemistry and its effect on the interfacial and mechanical properties of carbon fiber/epoxy composites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interface in carbon fiber (CF)-reinforced polymer composites plays an important role in determining the mechanical properties of composites. In order to improve the interfacial adhesion between the carbon fiber and resin matrix, we presented a facile and rapid method for grafting nano-sized titanium dioxide (nano-TiO2) onto the CF surface by means of thiol–ene click chemistry under UV irradiation. Experimental results demonstrate that the chemical bonds are formed between the CF and nano-TiO2. The introduction of nano-TiO2 significantly enhances the surface energy of fiber and increases the wettability and mechanical interlocking between fiber and resin, resulting in a significant increase in the interfacial properties of composites. Compared to the raw CF/epoxy composites, the composites reinforced by the CF grafted with nano-TiO2 show an improvement of 78% in the interfacial shear strength. Moreover, the results of the mechanical properties tests reveal that the flexural strength and tensile strength of composites increase by 32.3 and 39.6% after grafting with nano-TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chand S (2000) Review carbon fibers for composites. J Mater Sci 35(6):1303–1313. doi:10.1023/A:1004780301489

    Article  Google Scholar 

  2. Feng Q, Cong WL, Pei ZJ, Ren CZ (2012) Rotary ultrasonic machining of carbon fiber-reinforced polymer: feasibility study. Mach Sci Technol 16(3):380–398

    Article  Google Scholar 

  3. Yao Y, Wang T, Gong Y, Gan L, Peng X, Wan Z (2016) Development of a carbon fiber reinforced composite chassis longitudinal arm. Sci Adv Mater 8(11):2133–2141

    Article  Google Scholar 

  4. Paiva MC, Bernardo CA, Nardin M (2000) Mechanical, surface and interfacial characterisation of pitch and pan-based carbon fibres. Carbon 38(9):1323–1337

    Article  Google Scholar 

  5. Schultz J, Lavielle L, Martin C (1987) The role of the interface in carbon fibre–epoxy composites. J Adhesion 23(1):45–60

    Article  Google Scholar 

  6. Hashin Z (2002) Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J Mech Phys Solids 50(12):2509–2537

    Article  Google Scholar 

  7. Guessasma S, Bassir D, Hedjazi L (2015) Influence of interphase properties on the effective behaviour of a starch–hemp composite. Mater Design 65:1053–1063

    Article  Google Scholar 

  8. Hughes JDH (1991) The carbon fibre/epoxy interface—a review. Compos Sci Technol 41(1):13–45

    Article  Google Scholar 

  9. Tang LG, Kardos JL (1997) A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polym Compos 18(1):100–113

    Article  Google Scholar 

  10. Jiang J, Yao X, Xu C, Su Y, Zhou L, Deng C (2017) Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites. Compos Part A 95:248–256

    Article  Google Scholar 

  11. Rjafiallah S, Guessasma S, Lourdin D (2009) Effective properties of biopolymer composites: a three-phase finite element model. Compos Part A 40(2):130–136

    Article  Google Scholar 

  12. Liu J, Tian Y, Chen Y, Liang J (2010) Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution. Appl Surf Sci 256(21):6199–6204

    Article  Google Scholar 

  13. Jiang S, Li QF, Zhao YH, Wang JW, Kang MQ (2015) Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites. Compos Sci Technol 110:87–94

    Article  Google Scholar 

  14. Ma L, Meng L, Fan D, He J, Yu J, Qi M, Chen Z, Huang Y (2014) Interfacial enhancement of carbon fiber composites by generation 1–3 dendritic hexamethylenetetramine functionalization. Appl Surf Sci 296(8):61–68

    Article  Google Scholar 

  15. Zhang X, Fan X, Yan C, Li H, Zhu Y, Li X, Yu L (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Interfaces 4(3):1543–1552

    Article  Google Scholar 

  16. Hbib M, Guessasma S, Bassir D, Benseddiq N (2011) Interfacial damage in biopolymer composites reinforced using hemp fibres: finite element simulation and experimental investigation. Compos Sci Technol 71(11):1419–1426

    Article  Google Scholar 

  17. Vivet A, Leclerc W, Doudou BB, Chen J, Poilâne C (2015) Improvement by nanofibers of load transfer in carbon fiber reinforced composites. Fibers 3(2):134–150

    Article  Google Scholar 

  18. Yang Y, Lv CX, Wang XK, Liu HP, He F, Li YH, Song Y (2005) Effects of nano-SiO2 modified emulsion sizing on the interfacial performance of carbon fiber reinforced plastics. New Carbon Mater 20(3):211–216

    Google Scholar 

  19. Kepple KL, Sanborn GP, Lacasse PA, Gruenberg KM, Ready WJ (2008) Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon 46(15):2026–2033

    Article  Google Scholar 

  20. Gao B, Zhang R, He M, Sun L, Wang C, Liu L, Zhao L, Cui H, Cao A (2016) Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites. Compos Part A 90:433–440

    Article  Google Scholar 

  21. Zang Z, Tang G, Wang D, Wei G, Wu G, Huang W, Mi W, Wen D (2012) The deposition of TiO2 on the mechanical properties of carbon fiber-reinforced LDPE composite. Polym Plast Technol 51(9):873–877

    Article  Google Scholar 

  22. He X, Zhang F, Wang R, Liu W (2007) Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers. Carbon 45(13):2559–2563

    Article  Google Scholar 

  23. Al-Turaif HA (2010) Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Prog Org Coat 69(3):241–246

    Article  Google Scholar 

  24. Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ (2011) Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141(1–3):3–15

    Article  Google Scholar 

  25. Laachachi A, Vivet A, Nouet G, Doudou BB, Poilâne C, Chen J, Bai JB, Ayachi MH (2008) A chemical method to graft carbon nanotubes onto a carbon fiber. Mater Lett 62(3):394–397

    Article  Google Scholar 

  26. Hashishin T, Murashita J, Joyama A, Kaneko Y (1998) Oxidation-resistant coating of carbon fibers with TiO2 by sol–gel method. J Ceram Soc Jpn 106(1229):1–5

    Article  Google Scholar 

  27. Rui W, Wan Y, Fang H, Yu Q, Wei Y, Luo H (2012) The synthesis of a new kind of magnetic coating on carbon fibers by electrodeposition. Appl Surf Sci 258(7):3007–3011

    Article  Google Scholar 

  28. Shen A, Guo Z, Yu L, Cao L, Liang X (2011) A novel zwitterionic HILIC stationary phase based on “thiol–ene” click chemistry between cysteine and vinyl silica. Chem Commun 47(15):4550–4552

    Article  Google Scholar 

  29. Li YH, Wang D, Buriak JM (2010) Molecular layer deposition of thiol–ene multilayers on semiconductor surfaces. Langmuir 26(2):1232–1238

    Article  Google Scholar 

  30. Hoyle CE, Bowman CN (2010) Thiol–ene click chemistry. Angew Chem Int Edit 49(9):1540–1573

    Article  Google Scholar 

  31. Khire VS, Harant AW, Watkins AW, Anseth KS, Bowman CN (2006) Ultrathin patterned polymer films on surfaces using thiol–ene polymerizations. Macromolecules 39(15):5081–5086

    Article  Google Scholar 

  32. Xiong L, Lian Z, Liang H, Li X, Huang S (2013) Influence of hyperbranched poly(2-(2-bromopropionyloxy)ethyl acrylate)-modified TiO2 nanoparticles on the properties of epoxy resin nanocomposites. Polym Plast Technol 52(9):900–906

    Article  Google Scholar 

  33. Xiong L, Qin X, Liang H, Huang S, Lian Z (2017) Covalent functionalization of carbon fiber with poly(acrylamide) by reversible addition-fragmentation chain transfer polymerization for improving carbon fiber/epoxy interface. Polym Compos 38(1):27–31

    Article  Google Scholar 

  34. López T, Ortiz E, Gómez R, Picquart M (2006) Amorphous sol–gel titania modified with heteropolyacids. J Sol Gel Sci Technol 37(3):189–193

    Article  Google Scholar 

  35. Giulidori C, Mosconi N, Toplikar B, Vega M, Williams P, Svetaz L, Raimondi M, Rizzotto M (2016) Heteroleptic complexes of antifungal drugs with the silver ion. J Phys Org Chem 29(11):656–664

    Article  Google Scholar 

  36. Li M, Lu B, Ke QF, Guo YJ, Guo YP (2017) Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal. J Hazard Mater 333:88–98

    Article  Google Scholar 

  37. Qian H, Bismarck A, Greenhalgh ES, Shaffer MSP (2010) Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Compos Part A 41(9):1107–1114

    Article  Google Scholar 

  38. Peng Q, He X, Li Y, Wang C, Wang R, Hu PA, Yan Y, Sritharan T (2012) Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites. J Mater Chem 22(13):5928–5931

    Article  Google Scholar 

  39. Qian J, Wu J, Liu X, Zhuang Q, Han Z (2012) Improvement of interfacial shear strengths of polybenzobisoxazole fiber/epoxy resin composite by n-TiO2 coating. J Appl Polym Sci 127(4):2990–2995

    Article  Google Scholar 

  40. Hui X, You L, Cheng Y (2015) Properties of nano-TiO2 reinforced T700 CF/E composites. Aerosp Mater Technol 45(3):39–41

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (No. 51463017), Science Foundation of Aeronautics of China (No. 2016ZF56022) and Natural Science Foundation of Jiangxi Province (20171BAB206019 and 20171BAB216002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, L., Zhan, F., Liang, H. et al. Chemical grafting of nano-TiO2 onto carbon fiber via thiol–ene click chemistry and its effect on the interfacial and mechanical properties of carbon fiber/epoxy composites. J Mater Sci 53, 2594–2603 (2018). https://doi.org/10.1007/s10853-017-1739-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1739-5

Keywords

Navigation