Skip to main content
Log in

Boron-containing phenolic–siloxane hybrid polymers through facile click chemistry route

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Realization of easily processable, tough phenolic functional polymer materials is of high demand for composite applications. Herein, we report the synthesis of boron-containing phenolic–siloxane hybrid polymers through a facile copper-catalysed azide–alkyne click chemistry (CuAAC) approach. For this, phenolic resoles incorporated with boron (PFB) was propargyl-derivatized and then bridged through triazole moieties using telechelic α, ω azidated polydimethylsiloxane (AZ-PDMS). The propargylated boronated PF (PFBPr) resins exhibited high heat of reaction during thermal cure due to the prevalence of multiple reactions. PFBPr-siloxane hybrid co-polymers exhibited glass transitions in the ranges – 100 to – 75 °C and at 25–35 °C corresponding to soft segment and hard segments. Pyrolysed PFBPr-siloxane products showed mixed phase heterogeneous systems of B and SiC. Introduction of boron and silicon improved the degree of graphitization and reduced the graphite crystallite size of the carbonization products. The pyrolysed compounds of silicon and boron formed during high temperature were conducive for creating a layer of void-free graphitic ordered carbon that improved with boron and silicon content, as revealed by SEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Scheme 3
Scheme 4
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. John B et al (2011) Medium-density ablative composites: processing, characterisation and thermal response under moderate atmospheric re-entry heating conditions. J Mater Sci 46(15):5017–5021

    Article  Google Scholar 

  2. Pulci G et al (2010) Carbon–phenolic ablative materials for re-entry space vehicles: manufacturing and properties. Compos A 41(10):1483–1490

    Article  Google Scholar 

  3. Patton RD et al (2002) Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites. Compos A 33(2):243–251

    Article  Google Scholar 

  4. Bahramian AR et al (2006) Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: process modeling and experimental. Polymer 47(10):3661–3673

    Article  Google Scholar 

  5. Natali M et al (2012) Ablative properties of carbon black and MWNT/phenolic composites: a comparative study. Compos A 43(1):174–182

    Article  Google Scholar 

  6. Nair CPR (2004) Advances in addition-cure phenolic resins. Prog Polym Sci 29(5):401–498

    Article  Google Scholar 

  7. Bindu RL et al (2001) Addition-cure phenolic resins based on propargyl ether functional novolacs: synthesis, curing and properties. Polym Int 50(6):651–658

    Article  Google Scholar 

  8. Martín C et al (2006) Boron-containing novolac resins as flame retardant materials. Polym Degrad Stab 91(4):747–754

    Article  Google Scholar 

  9. Abdalla MO, Ludwick A, Mitchell T (2003) Boron-modified phenolic resins for high performance applications. Polymer 44(24):7353–7359

    Article  Google Scholar 

  10. Liu Y et al (2002) Thermal properties and stability of boron-containing phenol-formaldehyde resin formed from paraformaldehyde. P Polym Degrad Stab 77(3):495–501

    Article  Google Scholar 

  11. Gao J et al (2004) Structure of a boron-containing bisphenol-F formaldehyde resin and kinetics of its thermal degradation. Polym Degrad Stab 83(1):71–77

    Article  Google Scholar 

  12. Wang D-C et al (2008) Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites. Polym Degrad Stab 93(1):125–133

    Article  Google Scholar 

  13. Chiang C-L et al (2004) Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polym Degrad Stab 83(2):207–214

    Article  Google Scholar 

  14. Zhang Y et al (2006) Phenolic resin–trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: structure and properties. Polymer 47(9):2984–2996

    Article  Google Scholar 

  15. Zhuo D et al (2011) Flame retardancy materials based on a novel fully end-capped hyperbranched polysiloxane and bismaleimide/diallylbisphenol A resin with simultaneously improved integrated performance. J Mater Chem 21(18):6584–6594

    Article  Google Scholar 

  16. Wu YH et al (2013) Hybrid nanocomposites based on novolac resin and octa (phenethyl) polyhedral oligomeric silsesquioxanes (POSS): miscibility, specific interactions and thermomechanical properties. Polym Bull (Berlin) 70(12):3261–3277

    Article  Google Scholar 

  17. Li S et al (2017) Polysiloxane modified phenolic resin with co-continuous structure. Polymer 120(1):217–222

    Article  Google Scholar 

  18. Li S et al (2016) Structure and improved thermal stability of phenolic resin containing silicon and boron elements. Polym Degrad Stab 133(1):321–329

    Article  Google Scholar 

  19. Pittman CU et al (2003) Hybrid inorganic/organic crosslinked resins containing polyhedral oligomeric silsesquioxanes. Macromol Symp 196(1):301–325

    Article  Google Scholar 

  20. Pittman CU et al (2006) Chemical Bonding between phenolic resins and polyhedral oligomeric silsesquioxanes (POSS) in inorganic–organic hybrid nanocomposites. J Inorg Organomet Polym Mater 16(1):43–59

    Article  Google Scholar 

  21. Kolb HC et al (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    Article  Google Scholar 

  22. Moses JE et al (2007) The growing applications of click chemistry. Chem Soc Rev 36(8):1249–1262

    Article  Google Scholar 

  23. Hoyle CE et al (2010) Thiol–ene click chemistry. Angew Chem Int Ed 49(9):1540–1573

    Article  Google Scholar 

  24. Binder WH, Sachsenhofer R (2007) ‘Click’chemistry in polymer and materials science. Macromol Rapid Commun 28(1):15–54

    Article  Google Scholar 

  25. John B et al (2007) Low-density phenolic syntactic foams: processing and properties. Cell Polym 26(4):229–244

    Google Scholar 

  26. Madsen et al (2013) Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry. Polym Chem 4(5):1700–1707

    Article  Google Scholar 

  27. Ganesh Babu T, Devasia R (2016) Boron-modified phenol formaldehyde resin-based self-healing matrix for Cf/SiBOC composites. Adv Appl Ceram 115(8):457–469

    Article  Google Scholar 

  28. Zmihorska-Gotfryd A (2006) Phenol-formaldehyde resols modified by boric acid. Polimery 5:386–388

    Google Scholar 

  29. Kawamoto AM et al (2010) Synthesis of a boron modified phenolic resin. J Aerosp Technol Manag 2(2):169–182

    Article  Google Scholar 

  30. Novikov N et al (1986) Analysis of the 13C and 1H NMR spectra of phenol-formaldehyde resole oligomers. Polym Sci USSR 28(5):1187–1196

    Article  Google Scholar 

  31. Nair CR et al (2001) Thermal characteristics of addition-cure phenolic resins. Polym Degrad Stab 73(2):251–257

    Article  Google Scholar 

  32. Grenier-Loustalot M et al (1997) Prepolymers with propargylic terminal residues—I. Simulation of reaction mechanisms and kinetics on monofunctional models. Eur Polym J 33(7):1125–1134

    Article  Google Scholar 

  33. Li S et al (2015) Enhanced compatibility and morphology evolution of the hybrids involving phenolic resin and silicone intermediate. Mater Chem Phys 165(1):25–33

    Article  Google Scholar 

  34. Li H et al (2013) Thermal degradation behaviors of polydimethylsiloxane-graft-poly(methyl methacrylate). Thermochim Acta 573(1):32–38

    Article  Google Scholar 

  35. Xu L et al (2012) Fabrication and microstructure of boron-doped isotropic pyrolytic carbon. Carbon 50(12):4705–4710

    Article  Google Scholar 

  36. Lyu SC et al (2011) Synthesis of boron-doped double-walled carbon nanotubes by the catalytic decomposition of tetrahydrofuran and triisopropyl borate. Carbon 49(5):1532–1541

    Article  Google Scholar 

  37. Li S et al (2016) The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin. Polym Degrad Stab 124(1):68–76

    Article  Google Scholar 

  38. Cuesta A et al (1994) Raman microprobe studies on carbon materials. Carbon 32(8):1523–1532

    Article  Google Scholar 

  39. Babu TG, Devasia R (2016) Boron modified phenol formaldehyde derived Cf/SiBOC composites with improved mechanical strength for high temperature applications. J Inorg Organomet Polym Mater 26(4):764–772

    Article  Google Scholar 

  40. Wang S et al (2014) High char yield of aryl boron-containing phenolic resins: the effect of phenylboronic acid on the thermal stability and carbonization of phenolic resins. Polym Degrad Stab 99(1):1–11

    Article  Google Scholar 

  41. Liu Y, Jing X (2007) Pyrolysis and structure of hyperbranched polyborate modified phenolic resins. Carbon 45(10):1965–1971

    Article  Google Scholar 

  42. Shi F et al (2010) A new route to fabricate SiB 4 modified C/SiC composites. J Eur Ceram Soc 30(9):1955–1962

    Article  Google Scholar 

  43. Ko T-H et al (2001) Microstructural changes of phenolic resin during pyrolysis. J Appl Polym Sci 81(5):1084–1089

    Article  Google Scholar 

  44. Milonjić S, Bibić N (1995) Influence of boric acid concentration on silicon carbide morphology. J Mater Sci Lett 14(15):1052–1054

    Article  Google Scholar 

  45. WU Y et al (2001) Direct observation of vapor–liquid–solid nanowire growth. J Am Chem Soc 123(13):3156–3166

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Director, VSSC for permission to publish this work. Analytical support from the Analytical and Spectroscopy Division, VSSC, and Ceramic Matrix Products Division, VSSC, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Satheesh Chandran.

Ethics declarations

Conflict of interest

The authors hereby declare that there is no conflict of interest for this manuscript preparation and publishing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandran, M.S., Sunitha, K., Gayathri, D.S. et al. Boron-containing phenolic–siloxane hybrid polymers through facile click chemistry route. J Mater Sci 53, 2497–2510 (2018). https://doi.org/10.1007/s10853-017-1737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1737-7

Keywords

Navigation