Skip to main content
Log in

Hierarchical CoFe2O4/NiFe2O4 nanocomposites with enhanced electrochemical capacitive properties

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hierarchical CoFe2O4/NiFe2O4 nanocomposites are prepared via a facile hydrothermal method, in which CoFe2O4 nanoparticles are coated by NiFe2O4 nanoparticles to form a novel nanostructure. Comparing with the single component of either CoFe2O4 electrodes or NiFe2O4 electrodes, the as-prepared hierarchical CoFe2O4/NiFe2O4 nanocomposites electrodes deliver a higher specific capacitance of 269 F g−1 at a current density of 1 A g−1 and exhibit capacity retention of 81% after 10000 charge–discharge cycles. The improved electrochemical performance demonstrates that hierarchical CoFe2O4/NiFe2O4 nanocomposites are promising materials and provide a new idea for future generation supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang YH, Wang CC, Cheng WY (2014) Dispersing WO3 in carbon aerogel makes an outstanding supercapacitor electrode material. Carbon 69:287–293

    Article  Google Scholar 

  2. Chen X, Huang Y, Zhang K (2017) Synthesis and high-performance of carbonaceous polypyrrole nanotubes coated with SnS2 nanosheets anode materials for lithium ion batteries. Chem Eng J 330:470–479

    Article  Google Scholar 

  3. Xia X, Zhu C, Luo J (2014) Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 10:766–773

    Article  Google Scholar 

  4. Nomoto S, Nakata H, Yoshioka K (2001) Advanced capacitors and their application. J Power Sources 97–98:807–811

    Article  Google Scholar 

  5. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  Google Scholar 

  6. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  7. Wu H, Lou Z, Yang H (2015) A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 7:1921–1926

    Article  Google Scholar 

  8. Yu ZY, Chen LF, Yu SH (2014) Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J Mater Chem A 2:10889–10894

    Article  Google Scholar 

  9. Ge J, Fan G, Si Y (2016) Elastic and hierarchical porous carbon nanofibrous membranes incorporated with NiFe2O4 nanocrystals for highly efficient capacitive energy storage. Nanoscale 8:2195–2204

    Article  Google Scholar 

  10. Zhu M, Meng D, Wang C (2013) Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property. ACS Appl Mater Interfaces 5:6030–6037

    Article  Google Scholar 

  11. Sen P, De A (2010) Electrochemical performances of poly(3,4-ethylenedioxythiophene)/NiFe2O4 nanocomposite as electrode for supercapacitor. Electrochim Acta 55:4677–4684

    Article  Google Scholar 

  12. Shanmugavani A, Kalpana D, Selvan RK (2015) Electrochemical properties of CoFe2O4 nanoparticles as negative and Co(OH)2 and Co2 Fe(CN)6 as positive electrodes for supercapacitors. Mater Res Bull 71:133–141

    Article  Google Scholar 

  13. Kumbhar VS, Jagadale AD, Shinde NM (2012) Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nanoflakes for supercapacitor application. Appl Surf Sci 259:39–43

    Article  Google Scholar 

  14. Javed MS, Zhang C, Chen L (2016) Hierarchical mesoporous NiFe2O4 nanocone forest directly growing on carbon textile for high performance flexible supercapacitors. J Mater Chem A 4:8851–8859

    Article  Google Scholar 

  15. Kuo SL, Wu NL (2006) Electrochemical characterization on MnFe2O4/carbon black composite aqueous supercapacitors. J Power Sources 162:1437–1443

    Article  Google Scholar 

  16. Wang Z, Zhang X, Li Y (2013) Synthesis of grapheme/NiFe2O4 nanocomposites and their electrochemical capacitive behavior. J Mater Chem A 1:6393–6399

    Article  Google Scholar 

  17. Vadiyar MM, Bhise SC, Patil SK (2015) Mechanochemical growth of a porous ZnFe2O4 nano-flake thin film as an electrode for supercapacitor application. RSC Adv 5:45935–45942

    Article  Google Scholar 

  18. Sattar AA, El-Sayed HM, Alsuqia I (2015) Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. J Magn Magn Mater 395:89–96

    Article  Google Scholar 

  19. Naik SR, Salker AV (2012) Change in the magneto structural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J Mater Chem A 22:2740–2750

    Article  Google Scholar 

  20. Chen S, Yang G, Jia Y (2016) Three-dimensional NiCo2O4@NiWO4 core–shell nanowire arrays for high performance supercapacitors. J Mater Chem A 5:1028–1034

    Article  Google Scholar 

  21. Ren Y, Dong Q, Feng J (2012) Magnetic porous ferrospinel NiFe2O4: a novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water. J Colloid Interface Sci 382:90–96

    Article  Google Scholar 

  22. Wang Z, Du Y, Liu Y (2016) Degradation of organic pollutants by NiFe2O4/peroxymonosulfate: efficiency, influential factors and catalytic mechanism. RSC Adv 6:11040–11048

    Article  Google Scholar 

  23. Gupta V, Kawaguchi T, Miura N (2009) Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co–Ni/Co–Ni oxides composites. Mater Res Bull 44:202–206

    Article  Google Scholar 

  24. Lv L, Xu Q, Rui D (2013) Chemical synthesis of mesoporous CoFe2O4 nanoparticles as promising bifunctional electrode materials for supercapacitors. Mater Lett 111:35–38

    Article  Google Scholar 

  25. Sankar KV, Selvan RK (2014) The preparation of MnFe2O4 decorated flexible graphene wrapped with PANI and its electrochemical performances for hybrid supercapacitors. RSC Adv 4:17555–17566

    Article  Google Scholar 

  26. Venkatachalam V, Jayavel R (2015) Novel synthesis of Ni-ferrite (NiFe2O4) electrode material for supercapacitor applications. Nanoforum 1665:523–529

    Google Scholar 

  27. Bhojane P (2015) Synthesis of ammonia-assisted porous nickel ferrite (NiFe2O4) nanostructures as an electrode material for supercapacitors. J Nanosci Nanotechnol 16:1–6

    Google Scholar 

  28. Lai H, Wu Q, Zhao J (2016) Mesostructured NiO/Ni composites for high performance electrochemical energy storage. Energy Environ Sci 9:2053–2060

    Article  Google Scholar 

  29. Zhang L, Zheng W, Jiu H (2016) The synthesis of NiO and NiCo2O4, nanosheets by a new method and their excellent capacitive performance for asymmetric supercapacitor. Electrochim Acta 215:212–222

    Article  Google Scholar 

  30. Liu XY, Zhang YQ, Xia XH (2013) Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor. J Power Sources 239:157–163

    Article  Google Scholar 

  31. Bao F, Zhang Z, Guo W (2015) Facile synthesis of three dimensional NiCo2O4@MnO2 core–shell nanosheet arrays and its supercapacitive performance. Electrochim Acta 157:31–40

    Article  Google Scholar 

  32. Tang Z, Tang CH, Gong H (2012) A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater 22:1272–1278

    Article  Google Scholar 

  33. Fu W, Wang Y, Han W (2015) Construction of hierarchical ZnCo2O4@NixCo2x(OH)6x core/shell nanowire arrays for high-performance supercapacitors. J Mater Chem A 4:173–182

    Article  Google Scholar 

  34. Xiang D, Liu X, Dong X (2017) A facile synthetic method and electrochemical performances of nickel oxide/carbon fibers composites. J Mater Sci 52:7709–7718. doi:10.1007/s10853-017-1019-4

    Article  Google Scholar 

  35. Qu L, Zhao Y, Khan AM (2015) Interwoven three-dimensional architecture of cobalt oxide nanobrush-graphene@NixCo2x(OH)6x for high-performance supercapacitors. Nano Lett 15:2037–2044

    Article  Google Scholar 

  36. Rakhi RB, Chen W, Cha D (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12:2559–2567

    Article  Google Scholar 

  37. Li Z, Xin Y, Jia H (2017) Rational design of coaxial MWCNT-COOH@NiCo2S4 hybrid for supercapacitors. J Mater Sci 52:9661–9672. doi:10.1007/s10853-017-1115-5

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Innovation Foundation of Shanghai Aerospace Science and Technology Grant No. SAST2016114. The Natural Science Foundation of Shanxi Province (Grant No. 2015JZ014). Sponsored by Innovation Foundation for Doctor Dissertation of Northwestern polytechnical University (Grant No. CX201723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Huang, Y., Chen, X. et al. Hierarchical CoFe2O4/NiFe2O4 nanocomposites with enhanced electrochemical capacitive properties. J Mater Sci 53, 2648–2657 (2018). https://doi.org/10.1007/s10853-017-1735-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1735-9

Keywords

Navigation