Skip to main content
Log in

Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transient electronic is an emerging field that designed electronic devices can be fleetly and partially (or completely) degraded when transiency is triggered. Here, a class of PVA-based degradable composite film was synthesized, whose physical properties allow it to be used as substrate material for transient electronic devices. We found the dielectric properties and dissolution rate of the composite film can be tuned by controlling the TiO2 nanoparticle addition. Based on the as-synthesized PVA/TiO2 composite film, patch antennas were further designed and fabricated. The antennas were found to possess excellent radiation performances at a frequency of 2.5 GHz. Most importantly, the antennas could be physically degraded within 1 h when immersed in pure water. This study shows that the PVA-based film is a good candidate substrate or supporting material for transient electronics. In addition, the design and manufacture methods reported here provide a reference for other transient devices with complex structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Hwang SW, Tao H, Kim DH et al (2012) A physically transient form of silicon electronics. Science 337:1640–1644. doi:10.1126/science.1226325

    Article  Google Scholar 

  2. Kim DH, Kim YS, Amsden J et al (2009) Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett 95:133701–133703. doi:10.1063/1.3238552

    Article  Google Scholar 

  3. Berggren M, Richter-Dahlfors A (2007) Organic bioelectronics. Adv Mater 19:3201–3213. doi:10.1002/adma.200700419

    Article  Google Scholar 

  4. Kang SK, Murphy RKJ, Hwang SW et al (2016) Bioresorbable silicon electronic sensors for the brain. Nature 530:71–76. doi:10.1038/nature16492

    Article  Google Scholar 

  5. Fu KK, Wang ZY, Dai JQ, Carter M, Hu LB (2016) Transient electronics: materials and devices. Chem Mater 28:3527–3539. doi:10.1021/acs.chemmater.5b04931

    Article  Google Scholar 

  6. Gao Y, Zhang Y, Wang X et al (2017) Moisture-triggered physically transient electronics. Sci Adv 3:e.1701222–e.1701229. doi:10.1126/sciadv.1701222

    Article  Google Scholar 

  7. Gao Y, Sim K, Yan X, Jiang J, Xie JW, Yu CJ (2017) Thermally triggered mechanically destructive electronics based on electrospun poly(epsilon-caprolactone) nanofibrous polymer films. Sci Rep 7:947–955. doi:10.1038/s41598-017-01026-6

    Article  Google Scholar 

  8. Yin L, Huang X, Xu HX et al (2014) Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv Mater 26:3879–3884. doi:10.1002/adma.201306304

    Article  Google Scholar 

  9. Dong ZF, Wang Q, Du YM (2006) Alginate/gelatin blend films and their properties for drug controlled release. J Membr Sci 280:37–44. doi:10.1016/j.memsci.2006.01.002

    Article  Google Scholar 

  10. Acar H, Cinar S, Thunga M, Kessler MR, Hashemi N, Montazami R (2014) Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics. Adv Funct Mater 24:4135–4143. doi:10.1002/adfm.201304186

    Article  Google Scholar 

  11. Hwang SW, Song JK, Huang X et al (2014) High-performance biodegradable/transient electronics on biodegradable polymers. Adv Mater 26:3905–3911. doi:10.1002/adma.201306050

    Article  Google Scholar 

  12. Hernandez HL, Kang SK, Lee OP et al (2014) Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv Mater 26:7637–7642. doi:10.1002/adma.201403045

    Article  Google Scholar 

  13. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490. doi:10.1016/s0142-9612(00)00115-0

    Article  Google Scholar 

  14. Grayson ACR, Voskerician G, Lynn A, Anderson JM, Cima MJ, Langer R (2004) Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug delivery microchip. J Biomater Sci Polym Ed 15:1281–1304. doi:10.1163/1568562041959991

    Article  Google Scholar 

  15. Sim K, Wang X, Li YH et al (2017) Destructive electronics from electrochemical-mechanically triggered chemical dissolution. J Micromech Microeng 27:065010–065018. doi:10.1088/1361-6439/aa682f

    Article  Google Scholar 

  16. Park CW, Kang SK, Hernandez HL et al (2015) Thermally triggered degradation of transient electronic devices. Adv Mater 27:3783–3788. doi:10.1002/adma.201501180

    Article  Google Scholar 

  17. Wang XQ, Yucel T, Lu Q, Hu X, Kaplan DL (2010) Silk nanospheres and microspheres from silk/PVA blend films for drug delivery. Biomaterials 31:1025–1035. doi:10.1016/j.biomaterials.2009.11.002

    Article  Google Scholar 

  18. Yang DZ, Li YN, Nie J (2007) Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr Polym 69:538–543. doi:10.1016/j.carbpol.2007.01.008

    Article  Google Scholar 

  19. Liu TY, Hu SH, Liu KH, Liu DM, Chen SY (2008) Study on controlled drug permeation of magnetic-sensitive ferrogels: effect of Fe3O4 and PVA. J Control Release 126:228–236. doi:10.1016/j.jconrel.2007.12.006

    Article  Google Scholar 

  20. Frosini V, Butta E, Calamia M (1967) Dielectric behavior of some polar high polymers at ultra-high frequencies (microwaves). J Appl Polym Sci 11:527–551

    Article  Google Scholar 

  21. Yang CC (2007) Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr Sci 288:51–60. doi:10.1016/j.memsci.2006.10.048

    Article  Google Scholar 

  22. Rao JK, Raizada A, Ganguly D, Mankad MM, Satayanarayana SV, Madhu GM (2015) Investigation of structural and electrical properties of novel CuO–PVA nanocomposite films. J Mater Sci 50:7064–7074. doi:10.1007/s10853-015-9261-0

    Article  Google Scholar 

  23. Wu TM, Cheng JC, Yan MC (2003) Crystallization and thermoelectric behavior of conductive-filler-filled poly(1-caprolactone)/poly(vinyl butyral)/montmorillonite nanocomposites. Polymer 44:2553–2562. doi:10.1016/s0032-3861(03)00106-x

    Article  Google Scholar 

  24. Andrade GI, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2008) Small-angle X-ray scattering and FTIR characterization of nanostructured poly (vinyl alcohol)/silicate hybrids for immunoassay applications. J Mater Sci 43:450–463. doi:10.1007/s10853-007-1953-7

    Article  Google Scholar 

  25. Shehap AM, Akil DS (2016) Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films. Int J Nanoelectron Mater 9:17–36

    Google Scholar 

  26. Skipetrov SE (1999) Effective dielectric function of a random medium. Phys Rev B 60:12705–12709. doi:10.1103/PhysRevB.60.12705

    Article  Google Scholar 

  27. Maex K, Baklanov MR, Shamiryan D, Iacopi F, Brongersma SH, Yanovitskaya ZS (2003) Low dielectric constant materials for microelectronics. J Appl Phys 93:8793–8841. doi:10.1063/1.1567460

    Article  Google Scholar 

  28. Choudhary S, Sengwa RJ (2017) Anomalous behavior of the dielectric and electrical properties of polymeric nanodielectric poly(vinyl alcohol)–titanium dioxide films. J Appl Polym Sci 134::44568–44579. doi:10.1002/app.44568

    Article  Google Scholar 

  29. Song LN, Myers AC, Adams JJ, Zhu Y (2014) Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl Mater Interfaces 6:4248–4253. doi:10.1021/am405972e

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National R&D Program of China under No. 2017YFA0207400, National Key Research and Development Plan (No. 2016YFA0300801), National Natural Science Foundation of China under Nos. 51502033, 61571079, and International Cooperation Projects under Grant No. 2015DFR50870.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaiwu Zhang or Yulong Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Zhang, H., Jin, L. et al. Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. J Mater Sci 53, 2638–2647 (2018). https://doi.org/10.1007/s10853-017-1721-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1721-2

Keywords

Navigation