Skip to main content
Log in

Zeolitic imidazolate metal organic framework-8 as an efficient pH-controlled delivery vehicle for zinc phthalocyanine in photodynamic therapy

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To improve the aqueous solubility and cancer targeting of the photosensitizers in photodynamic therapy (PDT), we encapsulated the photosensitizer in a biocompatibility and pH-sensitive drug delivery system, zeolitic imidazolate frameworks-8 (ZIF-8) nanospheres. Powder X-ray diffraction and electron microscopy show that our nanospheres are uniform and single-crystalline particles. Owing to the cleavage of zinc–ligand coordination bonds, more ZnPc–COOH were released much faster in the mild acidic conditions (pH 5.0 and 6.0) in comparison with physiological environment (pH 7.4). By incorporating ZnPc–COOH in ZIF-8, our nanospheres exhibited high singlet oxygen quantum yield and intracellular ROS generation. Cell viability experiments toward HepG2 cells demonstrated the low toxicity of ZIF-8 and the good anticancer efficacy of the nanospheres with low IC50 values (4.2–4.9 μg/mL) under light illumination (670 nm, 1.5 J/cm2). Collectively, these results suggested that our nanospheres are the promising pH-responsive drug delivery systems for PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  Google Scholar 

  2. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545

    Article  Google Scholar 

  3. Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110:2795–2838

    Article  Google Scholar 

  4. Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042

    Article  Google Scholar 

  5. Patrice T, Rousset N, Bourré L, Thibaud S (2003) Sensitizers in photodynamic therapy. The Royal Society of Chemistry, London

    Book  Google Scholar 

  6. Brasseur N (2003) Sensitizers for photodynamic therapy: phthalocyanines. The Royal Society of Chemistry, London

    Google Scholar 

  7. Gurol I, Durmus M, Ahsen V, Nyokong T (2007) Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines. Dalton Trans 34:3782–3791

    Article  Google Scholar 

  8. Sekkat N, Bergh HVD, Nyokong T, Lange N (2012) Like a bolt from the blue: phthalocyanines in biomedical optics. Molecules 17:98

    Article  Google Scholar 

  9. Singh S, Aggarwal A, Bhupathiraju NVSDK, Arianna G, Tiwari K, Drain CM (2015) Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem Rev 115:10261–10306

    Article  Google Scholar 

  10. Dumoulin F, Durmuş M, Ahsen V, Nyokong T (2010) Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord Chem Rev 254:2792–2847

    Article  Google Scholar 

  11. Makhseed S, Machacek M, Alfadly W, Tuhl A, Vinodh M, Simunek T, Novakova V, Kubat P, Rudolf E, Zimcik P (2013) Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chem Commun 49:11149–11151

    Article  Google Scholar 

  12. Bugaj AM (2011) Targeted photodynamic therapy—a promising strategy of tumor treatment. Photochem Photobiol Sci 10:1097–1109

    Article  Google Scholar 

  13. Zhang FL, Huang Q, Zheng K, Li J, Liu JY, Xue JP (2013) A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(II) phthalocyanine and small molecule target-based anticancer drug erlotinib. Chem Commun 49:9570–9572

    Article  Google Scholar 

  14. Zhang F-L, Huang Q, Liu J-Y, Huang M-D, Xue J-P (2015) Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib–zinc(II) phthalocyanine conjugates. ChemMedChem 10:312–320

    Article  Google Scholar 

  15. Master AM, Rodriguez ME, Kenney ME, Oleinick NL, Gupta AS (2010) Delivery of the photosensitizer Pc 4 in PEG–PCL micelles for in vitro PDT studies. J Pharm Sci 99:2386–2398

    Article  Google Scholar 

  16. Nombona N, Maduray K, Antunes E, Karsten A, Nyokong T (2012) Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy. J Photochem Photobiol B 107:35–44

    Article  Google Scholar 

  17. Jiang B-P, Hu L-F, Shen X-C, Ji S-C, Shi Z, Liu C-J, Zhang L, Liang H (2014) One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Appl Mater Interfaces 6:18008–18017

    Article  Google Scholar 

  18. Imaz I, Rubio-Martinez M, An J, Sole-Font I, Rosi NL, Maspoch D (2011) Metal-biomolecule frameworks (MBioFs). Chem Commun 47:7287–7302

    Article  Google Scholar 

  19. Rojas S, Devic T, Horcajada P (2017) Metal organic frameworks based on bioactive components. J Mater Chem B 5:2560–2573

    Article  Google Scholar 

  20. Yang D, Kang X, Ma PA, Dai Y, Hou Z, Cheng Z, Li C, Lin J (2013) Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials 34:1601–1612

    Article  Google Scholar 

  21. Hsu SH, Li CT, Chien HT, Salunkhe RR, Suzuki N, Yamauchi Y, Ho KC, Wu KC (2014) Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs). Sci Rep 4:6983

    Article  Google Scholar 

  22. Sue Y-C, Wu J-W, Chung S-E, Kang C-H, Tung K-L, Wu KCW, Shieh F-K (2014) Synthesis of hierarchical micro/mesoporous structures via solid–aqueous interface growth: zeolitic imidazolate framework-8 on siliceous mesocellular foams for enhanced pervaporation of water/ethanol mixtures. ACS Appl Mater Interfaces 6:5192–5198

    Article  Google Scholar 

  23. Shieh FK, Wang SC, Yen CI, Wu CC, Dutta S, Chou LY, Morabito JV, Hu P, Hsu MH, Wu KC, Tsung CK (2015) Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J Am Chem Soc 137:4276–4279

    Article  Google Scholar 

  24. Nguyen CV, Liao Y-T, Kang T-C, Chen JE, Yoshikawa T, Nakasaka Y, Masuda T, Wu KCW (2016) A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chem 18:5957–5961

    Article  Google Scholar 

  25. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  Google Scholar 

  26. Xu ZC, Yoon J, Spring DR (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39:1996–2006

    Article  Google Scholar 

  27. Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103:10186–10191

    Article  Google Scholar 

  28. Mullangi V, Zhou X, Ball DW, Anderson DJ, Miyagi M (2012) Quantitative measurement of the solvent accessibility of histidine imidazole groups in proteins. Biochemistry 51:7202–7208

    Article  Google Scholar 

  29. Hayashi H, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM (2007) Zeolite a imidazolate frameworks. Nat Mater 6:501–506

    Article  Google Scholar 

  30. Imaz I, Hernando J, Ruiz-Molina D, Maspoch D (2009) Metal–organic spheres as functional systems for guest encapsulation. Angew Chem Int Ed 48:2325–2329

    Article  Google Scholar 

  31. Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo SCJ, Wei WD, Yang Y, Hupp JT, Huo F (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316

    Article  Google Scholar 

  32. Zhang J-P, Zhang Y-B, Lin J-B, Chen X-M (2012) Metal azolate frameworks: from crystal engineering to functional materials. Chem Rev 112:1001–1033

    Article  Google Scholar 

  33. Sun C-Y, Qin C, Wang X-L, Yang G-S, Shao K-Z, Lan Y-Q, Su Z-M, Huang P, Wang C-G, Wang E-B (2012) Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans 41:6906–6909

    Article  Google Scholar 

  34. Ren H, Zhang L, An J, Wang T, Li L, Si X, He L, Wu X, Wang C, Su Z (2014) Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem Commun 50:1000–1002

    Article  Google Scholar 

  35. Adhikari C, Das A, Chakraborty A (2015) Zeolitic imidazole framework (zif) nanospheres for easy encapsulation and controlled release of an anticancer drug doxorubicin under different external stimuli: a way toward smart drug delivery system. Mol Pharm 12:3158–3166

    Article  Google Scholar 

  36. Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, Zou X (2016) One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc 138:962–968

    Article  Google Scholar 

  37. Liédana N, Galve A, Rubio C, Téllez C, Coronas J (2012) CAF@ZIF-8: one-step encapsulation of caffeine in MOF. ACS Appl Mater Interfaces 4:5016–5021

    Article  Google Scholar 

  38. Zhuang J, Kuo C-H, Chou L-Y, Liu D-Y, Weerapana E, Tsung C-K (2014) Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano 8:2812–2819

    Article  Google Scholar 

  39. Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD (1995) Extracellular pH distribution in human tumours. Int J Hyperth 11:211–216

    Article  Google Scholar 

  40. Stubbs M, McSheehy PMJ, Griffiths JR, Bashford CL (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6:15–19

    Article  Google Scholar 

  41. Jung J, Lee I-H, Lee E, Park J, Jon S (2007) pH-sensitive polymer nanospheres for use as a potential drug delivery vehicle. Biomacromolecules 8:3401–3407

    Article  Google Scholar 

  42. Zhang M, Gu Z-Y, Bosch M, Perry Z, Zhou H-C (2015) Biomimicry in metal–organic materials. Coord Chem Rev 293:327–356

    Article  Google Scholar 

  43. Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, Chen M, Yang K, Lu G, Jiang L, Liu Z (2016) Nanoscale metal–organic frameworks for combined photodynamic and radiation therapy in cancer treatment. Biomaterials 97:1–9

    Article  Google Scholar 

  44. Lismont M, Dreesen L, Wuttke S (2017) Metal–organic framework nanoparticles in photodynamic therapy: current status and perspectives Adv Funct Mater 27:1606314-n/a

  45. Yanes RE, Tamanoi F (2012) Development of mesoporous silica nanomaterials as a vehicle for anticancer drug delivery. Ther Deliv 3:389–404

    Article  Google Scholar 

  46. Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2006) Metal–organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed 45:5974–5978

    Article  Google Scholar 

  47. di Nunzio MR, Agostoni V, Cohen B, Gref R, Douhal A (2014) A “ship in a bottle” strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J Med Chem 57:411–420

    Article  Google Scholar 

  48. Pan Y, Heryadi D, Zhou F, Zhao L, Lestari G, Su H, Lai Z (2011) Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 13:6937–6940

    Article  Google Scholar 

  49. Hu P, Zhuang J, Chou LY, Lee HK, Ling XY, Chuang YC, Tsung CK (2014) Surfactant-directed atomic to mesoscale alignment: metal nanocrystals encased individually in single-crystalline porous nanostructures. J Am Chem Soc 136:10561–10564

    Article  Google Scholar 

  50. Maree MD, Kuznetsova N, Nyokong T (2001) Silicon octaphenoxyphthalocyanines: photostability and singlet oxygen quantum yields. J Photochem Photobiol A 140:117–125

    Article  Google Scholar 

  51. Della Rocca J, Liu D, Lin W (2011) Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968

    Article  Google Scholar 

  52. Xing L, Zheng H, Cao Y, Che S (2012) coordination polymer coated mesoporous silica nanoparticles for pH-responsive drug release. Adv Mater 24:6433–6437

    Article  Google Scholar 

  53. Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81703345), the Major Project of the State Ministry of Science and Technology of China (No. 2011ZX09101-001-04), the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (No. 2014A04), the Natural Science Foundation of Fujian Province (No. 2016J05034) and Foundation of Fujian Educational Committee (No. JA15084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Juan Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, MR., Li, DY., Nian, FY. et al. Zeolitic imidazolate metal organic framework-8 as an efficient pH-controlled delivery vehicle for zinc phthalocyanine in photodynamic therapy. J Mater Sci 53, 2351–2361 (2018). https://doi.org/10.1007/s10853-017-1716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1716-z

Keywords

Navigation