Skip to main content
Log in

Synthesis and characterization of ordered mesoporous silica using rosin-based Gemini surfactants

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As structure-directing agents, the molecular structure of surfactants is critical for determining the properties of prepared mesoporous materials. Using dehydroabietic acid as a starting material, a series of rosin-based Gemini surfactants (abbreviated as R-n-R, n = 3, 6, 8 and 10, indicating the carbon atom number contained in the spacer) were synthesized and applied as templates in the preparation of ordered mesoporous silica. The structures and morphologies of the samples were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope and N2 adsorption–desorption. The R-n-R surfactants feature rigid tricyclic hydrophobic groups with large volumes, which are beneficial for the formation of a three-dimensional cubic phase. Furthermore, the spacer length was found to have a tremendous effect on the structure of the prepared mesoporous silica materials. The head group of R-3-R, which has a short spacer, is excessively charged, leading to silica nanoparticles with an irregular morphology and a rather low BET surface area. With longer spacer lengths, R-6-R, R-8-R and R-10-R are conducive to generating silica nanoparticles with a novel dumbbell-like morphology and with higher BET surface areas of 1171, 1096 and 1186 m2 g−1, respectively. The results demonstrate the particularities of the Gemini surfactant structure in the preparation of mesoporous silica nanoparticles with novel morphologies, and the details of the molecular interactions that occur in the condensation of silicate anions are also revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    Article  Google Scholar 

  2. Beck J, Vartuli J, Roth W, Leonowicz M, Kresge C, Schmitt K, Mccullen S (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843

    Article  Google Scholar 

  3. Wu S, Mou C, Lin H (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42(9):3862–3875

    Article  Google Scholar 

  4. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97(6):2373–2420

    Article  Google Scholar 

  5. Pastva J, Skowerski K, Czarnocki S, Žilková N, Čejka J, Bastl Z, Balcar H (2014) Ru-based complexes with quaternary ammonium tags immobilized on mesoporous silica as olefin metathesis catalysts. ACS Catal 4(4):3227–3236

    Article  Google Scholar 

  6. Ji B, Dahl M, Li N, Zaera F, Yin Y (2013) Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy Environ Sci 6(7):2082–2092

    Article  Google Scholar 

  7. Angelova A, Angelov B, Mutafchieva R, Lesieur S (2015) Biocompatible mesoporous and soft nanoarchitectures. J Inorg Organomet Polym 25(2):214–232

    Article  Google Scholar 

  8. Angelova A, Angelov B, Drechsler M, Lesieur S (2013) Neurotrophin delivery using nanotechnology. Drug Discov Today 18(23–24):1263–1271

    Article  Google Scholar 

  9. Zerkoune L, Lesieur S, Putaux J, Choisnard L, Angelov B, Doutch J, Angelova A (2016) Mesoporous self-assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water-insoluble substances. Soft Matter 12(36):7539–7550

    Article  Google Scholar 

  10. Kalantari M, Yu M, Yang Y, Strounina E, Gu Z, Yu C (2016) Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Res 10(2):605–617

    Article  Google Scholar 

  11. Crossland E, Noel N, Sivaram V, Leijtens T, Alexander-Webber J, Snaith H (2013) Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495(7440):215–219

    Article  Google Scholar 

  12. Zhang L, Xing Z, Zhang H, Li Z, Wu X, Zhang X, Zhang Y, Zhou W (2016) High thermostable ordered mesoporous SiO2–TiO2 coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance. Appl Catal B-Environ 180:521–529

    Article  Google Scholar 

  13. Hunks W, Ozin G (2005) Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs). J Mater Chem 15(35):3716–3724

    Article  Google Scholar 

  14. Huo Q, Margolese D, Stucky G (1996) Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater 8(5):1147–1160

    Article  Google Scholar 

  15. Miyasaka K, Han L, Che S, Terasaki O (2006) A lesson from the unusual morphology of silica mesoporous crystals: growth and close packing of spherical micelles with multiple twinning. Angew Chem Int Ed 118(39):6666–6669

    Article  Google Scholar 

  16. Huo Q, Leon R, Petroff P, Stucky G (1995) Mesostructure design with Gemini surfactants: supercage formation in a three-dimensional hexagonal array. Science 268(5215):1324–1327

    Article  Google Scholar 

  17. Zhao D, Huo Q, Feng J, Jiman K, Han Y, Stucky G (1999) Novel mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants. Chem Mater 11(10):2668–2672

    Article  Google Scholar 

  18. Tanev P, Pinnavaia T (1995) A neutral templating route to mesoporous molecular sieves. Science 267(5199):865–867

    Article  Google Scholar 

  19. Liao X, Gao Z, Xia Y, Niu F, Zhai W (2017) Rational design and synthesis of carboxylate Gemini surfactants with excellent aggregate behaviour for nano-La2O3 morphology-controllable preparation. Langmuir 33(13):3304–3310

    Article  Google Scholar 

  20. Lei L, Feng L, Song B, Zhai Z, Shang S, Song Z (2016) Ionic liquid crystals with novel thermal properties formed by the Gemini surfactants containing four hydroxyl groups. RSC Adv 6(101):99361–99366

    Article  Google Scholar 

  21. Bhadani A, Tani M, Endo T, Sakai K, Abe M, Sakai H (2015) New ester based Gemini surfactants: the effect of different cationic headgroups on micellization properties and viscosity of aqueous micellar solution. Phys Chem Chem Phys 17(29):19474–19483

    Article  Google Scholar 

  22. Menger F, Littau C (1991) Gemini surfactants: synthesis and properties. J Am Chem Soc 113(4):1451–1452

    Article  Google Scholar 

  23. Menger F, Keiper J (2000) Gemini surfactants. Angew Chem Int Ed 39(11):1906–1920

    Article  Google Scholar 

  24. Zana R, Xia J (2004) Gemini surfactants: synthesis, interfacial and solution-phase behavior, and applications. Marcel Dekker Inc, New York

    Google Scholar 

  25. Shen S, Garcia-Bennett A, Liu Z, Lu Q, Shi Y, Yan Y, Terasaki O (2005) Three-dimensional low symmetry mesoporous silica structures templated from tetra-headgroup rigid bolaform quaternary ammonium surfactant. J Am Chem Soc 127(18):6780–6787

    Article  Google Scholar 

  26. Ryoo R, Park I, Jun S, Lee C, Kruk M, Jaroniec M (2005) Synthesis of ordered and disordered silicas with uniform pores on the border between micropore and mesopore regions using short double-chain surfactants. J Am Chem Soc 123(8):1650–1657

    Article  Google Scholar 

  27. Li M, Zhang C, Yang X, Xu H (2013) Controllable synthesis of hollow mesoporous silica nanoparticles templated by kinetic self-assembly using a Gemini surfactant. RSC Adv 3(37):16304–16307

    Article  Google Scholar 

  28. Hao T, Shi J, Zhuang T, Wang W, Li F, Wang W (2012) Mesostructure-controlled synthesis of chiral norbornane-bridged periodic mesoporous organosilicas. RSC Adv 2(5):2010–2014

    Article  Google Scholar 

  29. Wang H, Nguyen T, Li S, Liang T, Zhang Y, Li J (2015) Quantitative structure-activity relationship of antifungal activity of rosin derivatives. Bioorg Med Chem Lett 25(2):347–354

    Article  Google Scholar 

  30. González M, Pérezguaita D, Correaroyero J, Zapata B, Agudelo L, Mesaarango A, Betancurgalvis L (2010) Synthesis and biological evaluation of dehydroabietic acid derivatives. Eur J Med Chem 45(2):811–816

    Article  Google Scholar 

  31. Israelachvili J, Mitchell D, Ninham B (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans II 72(24):1525–1568

    Article  Google Scholar 

  32. Wang P, Chen S, Zhao Z, Wang Z, Fan G (2015) Synthesis of ordered porous SiO2 with pores on the border between the micropore and mesopore regions using rosin-based quaternary ammonium salt. RSC Adv 5(15):11223–11228

    Article  Google Scholar 

  33. Lebedev O, Turner S, Liu S, Cool P, Van T (2012) New nano-architectures of mesoporous silica spheres analyzed by advanced electron microscopy. Nanoscale 4(5):1722–1727

    Article  Google Scholar 

  34. Liu S, Lebedev O, Mertens M, Meynen V, Cool P, Tendeloo G, Vansant E (2008) The merging of silica-surfactant microspheres under hydrothermal conditions. Microporous Mesoporous Mat 116(1):141–146

    Article  Google Scholar 

  35. Lou X, Wang Y, Yuan C, Lee J, Archer L (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18(17):2325–2329

    Article  Google Scholar 

  36. Liu B, Zeng H (2005) Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small 1(5):566–571

    Article  Google Scholar 

  37. Voort P, Mathieu M, Mees F, Vansant E (1998) Synthesis of high-quality MCM-48 and MCM-41 by means of the Gemini surfactant method. J Phys Chem B 102(44):8847–8851

    Article  Google Scholar 

  38. Han S, Hou W, Xu J, Huang X, Zheng L (2006) Study of the Pm3n space group of cubic mesoporous silica. Chem Phys Chem 7(2):394–399

    Article  Google Scholar 

  39. Lee H, Pak C, Yi S, Shon J, Kim S, So B, Chang H, Kim J (2005) Systematic phase control of periodic mesoporous organosilicas using Gemini surfactants. J Mater Chem 15(44):4711–4717

    Article  Google Scholar 

  40. Czechura K, Sayari A (2006) Synthesis of MCM-48 silica using a Gemini surfactant with a rigid spacer. Chem Mater 18(17):4147–4150

    Article  Google Scholar 

  41. Danino D, Talmon Y, Zana R (1995) Alkanediyl-α, ω-bis(dimethylalkylammonium bromide) surfactants (dimeric surfactants). 5. Aggregation and microstructure in aqueous solutions. Langmuir 11(5):1448–1456

    Article  Google Scholar 

Download references

Acknowledgements

Support from the National Natural Science Foundation of China (31300486) and the open research fund of Jiangsu Province Biomass Energy and Materials Laboratory (JSBEM201501) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binglei Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Xie, D., Song, B. et al. Synthesis and characterization of ordered mesoporous silica using rosin-based Gemini surfactants. J Mater Sci 53, 2434–2442 (2018). https://doi.org/10.1007/s10853-017-1709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1709-y

Keywords

Navigation