Skip to main content

Advertisement

Log in

Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to 301L stainless steel

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pulsed laser welding of Ti alloy to stainless steel (SS) has been applied using pure V as an interlayer. Microstructures and mechanical properties of joints were improved by changing laser offset. Two-pass welding was applied, and two weld zones were produced in the joint. The unmelted V interlayer acted as a barrier to mixing of the two base materials during welding. The melting amount of base materials and V interlayer was controlled by changing laser offset to control the fusion ratio and thus to improve joint microstructure. σ-Phase was present in V–SS weld zone of joint with laser offset of zero, which resulted in failure of the joint. Through changing laser offset, V concentration in V–SS weld zone of SS-0.2 mm offset joint was decreased and σ-phase was eliminated in the joint. ω-Phase was discovered in Ti alloy–V weld zone of zero-offset joint, which had an adverse effect on mechanical property of the joint. Through changing laser offset, V concentration in Ti alloy–V weld zone of V-0.2 mm offset joint was increased and precipitation of ω-phase was prevented. Three joints (zero-offset joint, SS-0.2 mm offset joint and V-0.2 mm offset joint) exhibited the tensile strength of 504, 548 and 599 MPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. He P, Zhang JH, Zhou RL, Li XQ (1999) Diffusion bonding technology of a titanium alloy to a stainless steel web with a Ni interlayer. Mater Charact 43:287–292

    Article  Google Scholar 

  2. Wei YH, Dong ZB, Liu B (2011) Stress distributions of welding joints in Ti–steel composite pressure vessel under working conditions. Sci Technol Weld Join 16:709–716

    Article  Google Scholar 

  3. Ghosh M, Chatterjee S, Mishra B (2003) The effect of intermetallics on the strength properties of diffusion bonds formed between Ti–5.5Al–2.4V and 304 stainless steel. Mater Sci Eng A 363:268–274

    Article  Google Scholar 

  4. Murray JL (1987) Phase diagrams of binary titanium alloys. ASM, International, Novelty, pp 99–111

    Google Scholar 

  5. Akbari Mousavi SAA, Sartangi PF (2008) Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite. Mater Sci Eng A 494:329–336

    Article  Google Scholar 

  6. Chen S, Zhang M, Huang J (2014) Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel. Mater Des 53:504–511

    Article  Google Scholar 

  7. Kundu S, Ghosh M, Laik A, Bhanumuthy K, Kale GB, Chatterjee S (2005) Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer. Mater Sci Eng A 407:154–160

    Article  Google Scholar 

  8. Denga YQ, Shenga GM, Huanga ZH (2013) Microstructure and mechanical properties of diffusion bonded titanium/304 stainless steel joint with pure Ag interlayer. Sci Technol weld Join 18:143–146

    Article  Google Scholar 

  9. Kundu S, Chatterjee S (2008) Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer. Mater Charact 5:631–637

    Article  Google Scholar 

  10. He P, Yue H, Zhan JH (2008) Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer. Mater Sci Eng A 486:171–176

    Article  Google Scholar 

  11. Yue X, He P, Feng JC, Zhang JH, Zhu FQ (2008) Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal. Mater Charact 59:1721–1727

    Article  Google Scholar 

  12. Dong H, Yang Z, Wang Z, Deng D, Dong C (2014) Vacuum brazing TC4 titanium alloy to 304 stainless steel with Cu–Ti–Ni–Zr–V amorphous alloy foil. JMEPEG 23:3770–3777

    Article  Google Scholar 

  13. Luo Z, Wang G, Xie G, Wang L, Zhao K (2013) Interfacial microstructure and properties of a vacuum hot roll-bonded titanium–stainless steel clad plate with a Nb interlayer. Acta Metall Sin 26:754–760

    Article  Google Scholar 

  14. Akbari Mousavi SAA, Farhadi Sartangi P (2009) Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel. Mater Des 30:459–468

    Article  Google Scholar 

  15. Song J, Kostka A, Veehmayer M, Raabe D (2011) Hierarchical microstructure of explosive joints: example of titanium to steel cladding. Mater Sci Eng A 528:2641–2647

    Article  Google Scholar 

  16. Fazel-Najafabadi M, Kashani-Bozorg SF, Zarei-Hanzaki A (2010) Joining of CP-Ti to 304 stainless steel using friction stir welding technique. Mater Des 31:4800–4807

    Article  Google Scholar 

  17. Fazel-Najafabadi M, Kashani-Bozorg SF, Zarei-Hanzaki A (2011) Dissimilar lap joining of 304 stainless steel to CP-Ti employing friction stir welding. Mater Des 32:1824–1832

    Article  Google Scholar 

  18. Cheepu MM, Muthupandi V, Loganathan S (2012) Friction welding of titanium to 304 stainless steel with electroplated nickel interlayer. Mater Sci Forum 710:620–625

    Article  Google Scholar 

  19. Chen HC, Bi GJ, Lee BY, Cheng CK (2016) Laser welding of CP Ti to stainless steel with different temporal pulse shapes. J Mater Process Technol 231:58–65

    Article  Google Scholar 

  20. Wang T, Zhang B, Feng J, Tang Q (2012) Effect of a copper filler metal on the microstructure and mechanical properties of electron beam welded titanium–stainless steel joint. Mater Charact 73:104–113

    Article  Google Scholar 

  21. Ting W, Zhang BG, Chen GQ, Feng JC, Qi TANG (2010) Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with copper interlayer sheet. Trans Nonferrous Met Soc China 20:1829–1834

    Article  Google Scholar 

  22. Tomashchuk I, Sallamand P, Belyavina N, Pilloz M (2013) Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer. Mater Sci Eng A 585:114–122

    Article  Google Scholar 

  23. Zhang Y, Sun DQ, Gu XY, Liu YJ (2017) Nd/YAG pulsed laser welding of TC4 titanium alloy to 301L stainless steel via pure copper interlayer. Int J Adv Manuf Technol 90:953–961

    Article  Google Scholar 

  24. Wang T, Zhang BG, Feng J (2014) Influences of different filler metals on electron beam welding of Ti alloy to stainless steel. T Nonferr Metal Soc 24:108–114

    Article  Google Scholar 

  25. Tomashchuk I, Sallamand P, Andrzejewski H, Grevey D (2011) The formation of intermetallics in dissimilar Ti6Al4V/copper/AISI 316L electron beam and Nd: YAG laser joints. Intermetallics 19:1466–1473

    Article  Google Scholar 

  26. Gao M, Mei SW, Wang ZM, Li XY, Zeng XY (2012) Characterisation of laser welded dissimilar Ti/steel joint using Mg interlayer. Sci Technol Weld Join 17:269–276

    Article  Google Scholar 

  27. Li HM, Sun DQ, Cai XL, Dong P, Wang WQ (2012) Laser welding of TiNi shape memory alloy and stainless steel using Ni interlayer. Mater Des 39:285–293

    Article  Google Scholar 

  28. Li H, Sun D, Cai X, Dong P, Gu X (2013) Laser welding of TiNi shape memory alloy and stainless steel using Co filler metal. Opt Laser Technol 45:453–460

    Article  Google Scholar 

  29. Elrefaey A, Tillmann W (2009) Solid state diffusion bonding of Ti to steel using a copper base alloy as interlayer. J Mater Process Technol 209:2746–2752

    Article  Google Scholar 

  30. Liu DY, Zhou C, Cong LJ, Liu SC (2014) Microstructure and mechanical properties of diffusion bonded joints between Ti and low carbon steel with copper interlayer. Met Sci Heat Treat 33:105–110

    Google Scholar 

  31. Gao M, Chen C, Wang L (2015) Laser-arc hybrid welding of dissimilar titanium alloy and stainless steel using copper wire. Mater Sci Eng A 46:2007–2020

    Google Scholar 

  32. Okamoto H (2002) J Phase Equilib 26:549–550

    Article  Google Scholar 

  33. Bo H, Duarte LI, Zhu WJ, Liu LB, Liu HS, Jina ZP, Leinenbach C (2013) Experimental study and thermodynamic assessment of the Cu–Fe–Ti system. Calphad 40:24–33

    Article  Google Scholar 

  34. Zhang Y, Sun D, Gu X, Li H (2016) A hybrid joint based on two kinds of bonding mechanisms for Titanium alloy and stainless steel by pulsed laser welding. Mater Lett 185:152–155

    Article  Google Scholar 

  35. Oliveira JP, Panton B, Zeng Z, Andrei CM, Zhou Y, Miranda RM, Braz Fernandes FM (2016) Laser joining of NiTi to Ti6Al4V using a Nb interlayer. Acta Mater 105:9–15

    Article  Google Scholar 

  36. Okamoto H (1993) Ti–V (Titanium–Vanadium). J Phase Equilib 14:266–267

    Google Scholar 

  37. Murray JL (1981) The Ti–V (Titanium–Vanadium) system. Bull Alloy Phase Diagr 2:48–55

    Article  Google Scholar 

  38. Okamoto H (2006) Fe–V(Iron–Vanadium). J Phase Equilib 27:542–543

    Article  Google Scholar 

  39. Chu Q, Zhang M, Li J, Yan C, Qin Z (2017) Influence of vanadium filler on the properties of titanium and steel TIG welded joints. J Mater Process Technol 240:293–304

    Article  Google Scholar 

  40. Tomashchuk I, Grevey D, Sallamand P (2015) Dissimilar laser welding of AISI 316L stainless steel to Ti6–Al4–6V alloy via vanadium interlayer. Mater Sci Eng A 622:37–45

    Article  Google Scholar 

  41. Anawa EM, Olabi AG (2008) Control of welding residual stress for dissimilar laser welded materials. J Mater Process Technol 204:22–33

    Article  Google Scholar 

  42. Pardal G, Ganguly S, Williams S, Vaja J (2016) Dissimilar metal joining of stainless steel and titanium using copper as transition metal. Int J Adv Manuf Technol 86:1139–1150

    Article  Google Scholar 

  43. Shanmugarajan B, Padmanabham G (2012) Fusion welding studies using laser on Ti–SS dissimilar combination. Opt Laser Eng 50:1621–1627

    Article  Google Scholar 

  44. Banerjee S, Mukhopadhyay P (2004) Phase transformations: examples from titanium and zirconium alloys, 1st edn. Pergamon Press, Oxford

    Google Scholar 

  45. Ohmuri Y, Ogo T, Nakai K, Kobayashi S (2001) Effects of ω-phase precipitation on β/α, α′ transformations in a metastable β titanium alloy. Mater Sci Eng A 312:182–188

    Article  Google Scholar 

  46. Dutta J, Ananthakrishna G, Banerjee S (2012) On the athermal nature of the β to ω transformation. Acta Mater 60:556–564

    Article  Google Scholar 

  47. Mccabe KK, Sass SL (1971) The initial stages of the omega phase transformation in Ti–V alloys. Philos Mag 23:957–970

    Article  Google Scholar 

  48. Ghosh C, Basu J, Ramachandran D, Mohandas E (2016) Phase separation and ω transformation in binary V–Ti and ternary V–Ti–Cr alloys. Acta Mater 121:310–324

    Article  Google Scholar 

  49. Sukedai E, Liu W, Awaji M, Horiuchi T (1994) Investigation of atomic structure of ω-phase crystals in Ti–Mo alloy using high resolution electron microscopy. Ultramicroscopy 54:192–200

    Article  Google Scholar 

  50. Sukedai E, Kitano Y, Ohnishi A (1997) Investigation of initial structures of aged ω-phase crystals in β-titanium alloys using high resolution electron microscopy. Micron 28:269–277

    Article  Google Scholar 

  51. Ustinovshikov Y, Pushkarev B, Sapegina I (2005) Phase transformations in alloys of the Fe–V system. J Alloys Compd 398:133–138

    Article  Google Scholar 

  52. Cieslak J, Tobola J, Dubiel SM (2013) Formation energy in σ-phase Fe–V alloys. J Phys Chem Solids 74:1303–1307

    Article  Google Scholar 

  53. Guo CP, Li CR, Zheng X, Du ZM (2012) Thermodynamic modeling of the Fe–Ti–V system. CALPHAD 38:155–160

    Article  Google Scholar 

  54. Bowen AW (1971) Scr Mater 5:709–716

    Google Scholar 

  55. Williams JC, Hickman BS, Marcus HL (1971) Metall Trans 2:1913–1919

    Google Scholar 

  56. Nogami S, Miyazaki J, Hasegawa A, Nagasaka T, Muroga T (2013) Study on electron beam weld joints between pure vanadium and SUS316L stainless steel. J Nucl Mater 442:562–566

    Article  Google Scholar 

  57. Min XH, Emura S, Zhang L, Tsuzaki K, Tsuchiya K (2015) Improvement of strength–ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase. Mater Sci Eng A 646:279–287

    Article  Google Scholar 

  58. Hon Y-H, Wang J-Y, Pan Y-N (2003) Composition/phase structure and properties of Titanium–Niobium alloys. Mater Trans JIM 44:2384–2390

    Article  Google Scholar 

  59. Ramsteiner IB, Shchyglo O, Mezger M, Udyansky A, Bugaev V, Schoder S, Reichert H, Dosch H (2008) Omega like diffuse x-ray scattering in Ti–V caused by static lattice distortion. Acta Mater 56:1298–1305

    Article  Google Scholar 

  60. Sikka SK, Vohra YK, Chidambaram R (1982) Omega phase in materials. Prog Mater Sci 27:245–310

    Article  Google Scholar 

  61. Ng HP, Devaraj A, Nag S, Bettles CJ, Gibson M, Fraser HL, Muddle BC, Banerjee R (2011) Phase separation and formation of omega phase in the beta matrix of a Ti–V–Cu alloy. Acta Mater 59:2981–2991

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoYan Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sun, D., Gu, X. et al. Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to 301L stainless steel. J Mater Sci 53, 2942–2955 (2018). https://doi.org/10.1007/s10853-017-1708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1708-z

Keywords

Navigation