Skip to main content
Log in

Solidification loops in the phase diagram of nanoscale alloy particles: from a specific example towards a general vision

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interface contributions as well as size confinement effects need to be taken into account into the description of phase equilibria and phase transformations in nanoscale systems. Here, a modified Gibbsian thermodynamic approach has been suggested to describe the solidification of a nano-sized liquid alloy droplet and the equilibrium states in the two-phase region of the phase diagram. Cu–Ni has been chosen as a model system due to the availability of thermodynamic data. This description shows for the first time the occurrence of solidification loops at the size-dependent temperature–composition phase diagram for the isolated Cu–Ni nano-droplet, showing two-phase equilibrium states for droplet radii of 25 and 40 nm, i.e. well within the size domain of nanoparticles that are, for example, used for applications in additive manufacturing. Furthermore, the current results show quantitatively that these equilibrium loops that are specific for the nano-sized systems do not coincide with the solubility curve. It leads to the new “solidification loop” concept concerning the phase diagram introduced in the paper. The isolated liquid Cu–Ni nanoscale droplet can actually crystallize along different trajectories, whereas the dominant transition type is comparable to homogeneous nucleation that proceeds from the inner part of the droplet towards the surface: the newly formed phase after initial nucleation is a Ni-rich crystal with a Cu-rich liquid shell. The decrease in the nanoparticle size causes the decrease in the solidification temperature and the temperature width of the phase transition, the increase in the solubility limit and the concentration width of the solidification loop as well as a change in the shape and slope of the equilibrium curves of the two-phase region of the phase diagram. For larger droplets, the size-dependent phase diagram approaches the well-known bulk phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen M, Wu B, Yang J, Zheng NF (2012) Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv Mater 24:862–879

    Article  Google Scholar 

  2. Banerjee M, Sharma S, Chattopadhyay A, Ghosh SS (2011) Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Nanoscale 3:5120–5125

    Article  Google Scholar 

  3. Duncan H, Lasia A (2008) Hydrogen adsorption/absorption on Pd/Pt (111) multilayers. J Electroanal Chem 621:62–68

    Article  Google Scholar 

  4. Pena RO, Pal U (2011) Au@Ag core-shell nanoparticles: efficient all-plasmonic fano-resonance generators. Nanoscale 3:3609–3612

    Article  Google Scholar 

  5. Chng TT, Polavarapu L, Xu QH, Ji W, Zeng HC (2011) Rapid synthesis of highly monodisperse AuxAg1-x alloy nanoparticles via a half-seeding approach. Langmuir 27:5633–5643

    Article  Google Scholar 

  6. Zhang H, Son J, Jang J, Lee JS, Ong W-L, Malen JA, Talapin DV (2013) Bi1-xSbx alloy nanocrystals: colloidal synthesis, charge transport, and thermoelectric properties. ACS Nano 7:10296–10306

    Article  Google Scholar 

  7. Gong J, Lee C-S, Chang YY, Chang YS (2014) A novel selfassembling nanoparticle of Ag/Bi with high reactive efficiency. Chem Commun 50:8597–8600

    Article  Google Scholar 

  8. Rastogi PK, Ganesan V, Krishnamoorthi S (2014) A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination. J Mater Chem A 2:933–943

    Article  Google Scholar 

  9. Wilde G, Bunzel P, Roesner H, Weissmuller J (2007) Phase equilibria and phase diagrams of nanoscaled systems. J Alloy Compd 434–435:286–289

    Article  Google Scholar 

  10. Guisbiers G, Mejia-Rosales S, Khanal S, Ruiz-Zepeda F, Whetten RL, José-Yacaman M (2014) Gold–copper nano-alloy “Tumbaga” in the Era of Nano: phase diagram and segregation. Nano Lett 14:6718–6726

    Article  Google Scholar 

  11. Liang LH, Liu D, Jiang Q (2003) Size-dependent continuous binary solution phase diagram. Nanotechnology 14:438–442

    Article  Google Scholar 

  12. Kim BJ, Tersoff J, Wen CY, Reuter MC, Stach EA, Ross FM (2009) Determination of size effects during the phase transition of a nanoscale Au-Si eutectic. Phys Rev Lett 103:155701–155704

    Article  Google Scholar 

  13. Park J, Lee J (2008) Phase diagram reassessment of Ag–Au system including size effect. CALPHAD 32:135–141

    Article  Google Scholar 

  14. Liu XJ, Wang CP, Jiang JZ, Ohnuma I, Kainuma R, Ishida K (2005) Thermodynamic calculation of phase diagram and phase stability with nano-size particle. Int J Mod Phys B 19:2645–2650

    Article  Google Scholar 

  15. Tanaka T, Hara S (2001) Thermodynamic evaluation of nano-particle binary alloy phase diagrams. Z Metallkd 92:1236–1241

    Google Scholar 

  16. Wautelet M (1992) Effects of size shape and environment on the phase diagrams of small structures. Nanotechnology 3:42–43

    Article  Google Scholar 

  17. Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35:1–159

    Article  Google Scholar 

  18. Jartych E, Zurawicz JK, Oleszak D, Pekala M (1999) Magnetic properties and structure of nanocrystalline Fe–Al and Fe–Ni alloys. Nanostr Mater 12:927–930

    Article  Google Scholar 

  19. Jo C, Lee J, Jang Y (2005) Electronic and magnetic properties of ultrathin Fe–Co alloy nanowires. Chem Mater 17:2667–2671

    Article  Google Scholar 

  20. James P, Eriksson O, Johansson B, Abrikosov IA (1999) Calculated magnetic properties of binary alloys between Fe Co Ni and Cu. Phys Rev B 59:419–430

    Article  Google Scholar 

  21. Kim DK, Kan D, Veres T, Normadin F, Liao JK, Kim HH, Lee SH, Zahn M, Muhammed M (2005) Monodispersed Fe–Pt nanoparticles for biomedical applications. J Appl Phys 97:10Q918(1)–10Q918(3)

    Google Scholar 

  22. Hong R, Fischer NO, Emrick T, Rotello VM (2005) Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem Mater 17:4617–4621

    Article  Google Scholar 

  23. Bonnemann H, Richards RM (2001) Nanoscopic metal particles: synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480

    Article  Google Scholar 

  24. Agrawal VV, Mahalakshmi P, Kulkarni GU, Rao CNR (2006) Nanocrystalline films of Au–Ag Au–Cu and Au–Ag–Cu alloys formed at the organic–aqueous interface. Langmuir 22:1846–1851

    Article  Google Scholar 

  25. Liu C, Wu X, Klemmer T, Shukla N, Weller D, Roy AG, Tanase M, Laughlin D (2005) Reduction of sintering during annealing of Fe–Pt nanoparticles coated with iron oxide. Chem Mater 17:620–625

    Article  Google Scholar 

  26. Botcharova E, Freudenberger J, Schultz L (2004) Cu–Nb alloys prepared by mechanical alloying and subsequent heat treatment. J Alloys Compd 365:157–163

    Article  Google Scholar 

  27. Liu QX, Wang CX, Zhang W, Wang GW (2003) Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction. Chem Phys Lett 382:1–5

    Article  Google Scholar 

  28. Wu ML, Chen DH, Huang TC (2001) Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17:3877–3883

    Article  Google Scholar 

  29. Liu S, Sun Z, Liu Q, Wu L, Huang Y, Yao T, Zhang J, Hu T, Ge M, Hu F, Xie Z, Pan G, Wei S (2014) Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles. ACS Nano 8:1886–1892

    Article  Google Scholar 

  30. Li M, Kuribayashi K (2006) Free solidification of undercooled eutectics. Mater Trans 47:2889–2897

    Article  Google Scholar 

  31. Hill TH (2001) A different approach to nanothermodynamics. NanoLetters 1(1):273–275

    Article  Google Scholar 

  32. Rusanov AI (2012) The development of the fundamental concepts of surface thermodynamics. Colloid J 74(2):136–153

    Article  Google Scholar 

  33. Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269(6):481–483

    Article  Google Scholar 

  34. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic thermodynamic and kinetic effects. Rev Mod Phys 77:371–423

    Article  Google Scholar 

  35. Kaptay G, Janczak-Rusch J, Pigozzi G, Jeurgens LPH (2014) Theoretical analysis of melting point depression of pure metals in different initial configurations. J Mater Eng Perform 23:1600–1607

    Article  Google Scholar 

  36. Mei QS, Lu K (2007) Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog Mater Sci 52:1175–1262

    Article  Google Scholar 

  37. Buffat P, Borel J-P (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298

    Article  Google Scholar 

  38. Nielsen OH, Sethna JP, Stoltze P, Jacobsen KW, Norskov JK (1994) Melting a copper cluster: critical-Droplet theory. Europhys Lett 26:51–56

    Article  Google Scholar 

  39. Luedtke CC, Landman U (1999) Melting of gold clusters. Phys Rev B 60:5065–5077

    Article  Google Scholar 

  40. Weissmueller J, Bunzel P, Wilde G (2004) Two-phase equilibrium in small alloy particles. Scr Mater 51:813–818

    Article  Google Scholar 

  41. Shirinyan A (2015) Concept of size-dependent atomic interaction energies for solid nanomaterials: thermodynamic and diffusion aspects. Metallofiz Noveishie Tekhnol 37:475–486

    Article  Google Scholar 

  42. Shirinyan A, Bilogorodskyy Yu (2012) Atom-atom interactions in continuous metallic nanofilms. Phys Met Metall 13:823–830

    Article  Google Scholar 

  43. Shirinyan A, Bilogorodskyy Yu (2010) Phase diagram construction of continuous Bi–Sn nanofilms due to the model of dependence of atomic interaction energies from the size of a system. Met Phys Adv Technol 32:1493–1508

    Google Scholar 

  44. Qi WH, Wang MP, Zhou M, Shen XQ, Zhang XF (2006) Modeling cohesive energy and melting temperature of nanocrystals. J Phys Chem Solids 67:851–855

    Article  Google Scholar 

  45. Safaei A (2011) Cohesive energy and physical properties of nanocrystals. Philos Mag 91:1509–1539

    Article  Google Scholar 

  46. Xiong SY, Qi WH, Cheng YJ, Huang BY, Wang MP, Li Y (2011) Universal relation for size dependent thermodynamic properties of metallic nanoparticle. J Phys Chem Chem Phys 13:10648–10651

    Article  Google Scholar 

  47. Jiang Q, Yang C (2008) Size effect on the phase stability of nanostructures. Curr Nanosci 4:179–200

    Article  Google Scholar 

  48. Guisbiers G, Mendoza-Cruz R, Bazán-Díaz L, Velázquez-Salazar JJ, Mendoza-Perez R, Robledo-Torres JA, Rodriguez-Lopez J-L, Montejano-Carrizales JM, Whetten RL, José-Yacamán M (2016) Electrum, the gold−silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano 10:188–298

    Article  Google Scholar 

  49. Qi W (2016) Nanoscopic thermodynamics. Acc Chem Res 49:1587–1595

    Article  Google Scholar 

  50. Li Y, Qi W, Huang B, Ji W, Wang M (2013) Size- and composition-dependent structural stability of core−shell and alloy Pd−Pt and Au−Ag nanoparticles. J Phys Chem C 117(29):15394–15401

    Article  Google Scholar 

  51. Huang R, Wen YH, Zhu ZZ, Sun SG (2012) Two-stage melting in core–shell nanoparticles: an atomic-scale perspective. J Phys Chem C 116:11837–11841

    Article  Google Scholar 

  52. Ruiz-Ruiz VF, Zumeta-Dubé I, Díaz D, Arellano-Jiménez MJ, José-Yacaman M (2017) Can silver Be alloyed with bismuth on nanoscale? An optical and structural approach. J Phys Chem C 12:940–949

    Article  Google Scholar 

  53. Ferrando R (2016) Chapter 4—theoretical and computational methods for nanoalloy structure and thermodynamics. Front Nanosc 10:75–129

    Article  Google Scholar 

  54. Oumellal Y, Joubert JM, Ghimbeu CM, Le Meins JM, Bourgona J, Zlotea C (2016) Synthesis and stability of Pd–Rh nanoalloys with fully tunable particle size and composition. Nano Struct Nano Objects 7:92–100

    Article  Google Scholar 

  55. Atanasov I, Ferrando R, Johnston RL (2014) Structure and solid solution properties of Cu–Ag nanoalloys. J Phys Condens Mat 26:275301-1–275301-8

    Article  Google Scholar 

  56. Ahmadi M, Behafarid F, Cui CH, Strasser P, Cuenya BR (2013) Long-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects. ACS Nano 7:9195–9204

    Article  Google Scholar 

  57. Toaia TJ, Rossia G, Ferrando R (2008) Global optimisation and growth simulation of AuCu clusters. Faraday Discuss 138:49–58

    Article  Google Scholar 

  58. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  Google Scholar 

  59. Guisbiers G, Mendoza-Pérez R, Bazán-Díaz L, Mendoza-Cruz R, Jesús Velázquez-Salazar J, José-Yacamán M (2017) Size and Shape effects on the phase diagrams of nickel-based bimetallic nanoalloys. J Phys Chem C 121:6930–6939

    Article  Google Scholar 

  60. Liao H, Fisher A, Xu ZJ (2015) Surface segregation in bimetallic nanoparticles: a critical issue in electrocatalyst engineering. Small 11:3221–3246

    Article  Google Scholar 

  61. Wang GF, Van Hove MA, Ross PN, Baskes MI (2005) Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M = Ni, Re, Mo). Prog Surf Sci 79:28–45

    Google Scholar 

  62. Wang KW, Chung SR, Liu CW (2008) Surface segregation of PdxNi100-X alloy nanoparticles. J Phys Chem C 11:10242–10246

    Article  Google Scholar 

  63. Schamp CT, Jesser WA (2006) Two-phase equilibrium in individual nanoparticles of Bi–Sn. Metall Mater Trans A 37a:1825–1829

    Article  Google Scholar 

  64. Palatnik LS, Boiko BT (1961) On the state diagram of aluminum–copper alloys in thin films. Phys Met Metall 11:119–122

    Google Scholar 

  65. Lyman CE, Lakis RE, Stenger HG, Totdal B, Prestvik R (2000) Analysis of alloy nanoparticles. Mikrochim Acta 132:301–308

    Google Scholar 

  66. Yasuda H, Mori H (2002) Phase diagrams in nanometer-sized alloy systems. J Cryst Growth 237–239:234–238

    Article  Google Scholar 

  67. Rusanov AI (1978) Phasen gleichgewichte und Grenzflaecheners cheinungen. Akademie-Verlag, Berlin

    Google Scholar 

  68. Ulbricht H, Schmelzer J, Mahnke R, Schweitzer F (1988) Thermodynamics of finite systems and kinetics of first-order phase transitions. BSB Teubner, Leipzig

    Book  Google Scholar 

  69. Shirinyan AS, Wautelet M (2004) Phase separation in nanoparticles. Nanotechnology 15:1720–1731

    Article  Google Scholar 

  70. Shirinyan AS, Gusak AM (2004) Phase diagrams of decomposing nanoalloys. Philos Mag A 84:579–593

    Article  Google Scholar 

  71. Jesser WA, Shneck RZ, Gille WW (2004) Solid-liquid equilibria in nanoparticles of Pb–Bi alloys. Phys Rev B 69:144113–144121

    Article  Google Scholar 

  72. Shirinyan AS, Gusak AM, Wautelet M (2005) Phase diagram versus diagram of solubility: What is the difference for nanosystems? Acta Mater 53:5025–5032

    Article  Google Scholar 

  73. Shirinyan AS (2015) Two-phase equilibrium states in individual Cu–Ni nanoparticles: size depletion and hysteresis effects. Beilstein J Nanotechnol 6:1811–1820

    Article  Google Scholar 

  74. Shirinyan A, Wautelet M, Belogorodsky Y (2006) Solubility diagram of Cu–Ni nanosystem. J Phys Condens Matter 18:2537–2551

    Article  Google Scholar 

  75. Gusak AM, Kovalchuk AO, Straumal BB (2013) Interrelation of depletion and segregation in decomposition of nanoparticles. Philos Mag 93:1677–1689

    Article  Google Scholar 

  76. Massalski TB (1990) Binary alloy phase diagrams, vol 1–3, 2nd edn. ASM International, Materials Park

    Google Scholar 

  77. Villar P, Prince A, Okamoto H (1995) Handbook of ternary alloy phase diagrams, vol 1–10. ASM International, Materials Park

    Google Scholar 

  78. Saunders N, Miodownik AP (1998) CALPHAD calculation of phase diagrams: a comprehensive guide pergamon materials series. Elsevier Science Inc, New York

    Google Scholar 

  79. Hillert M (2008) Phase equilibria phase diagrams and phase transformations: their thermodynamic basis, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  80. Campbell CE, Kattner UR, Liu Z-K (2014) The development of phase-based property data using the CALPHAD method and infrastructure needs. Integr Mater Manuf Innov 3:12-1–23

    Article  Google Scholar 

  81. Steininger J (1970) Thermodynamics and calculation of the liquidus-solidus gap in homogenous monotonic alloy systems. J Appl Phys 41:2713–2724

    Article  Google Scholar 

  82. Mey S (1992) Thermodynamic re-assessment of the Cu–Ni system. CALPHAD 16:255–260

    Article  Google Scholar 

  83. Guisbiers G, Khanal S, Ruiz-Zepeda F, Roque de la Puente J, José-Yacaman M (2014) Cu–Ni nano-alloy: mixed core–shell or Janus nano-particle? Nanoscale 6:14630–14635

    Article  Google Scholar 

  84. Sopousek J, Vrestal J, Pinkas J, Broz P, Bursik J, Styskalik A, Skoda D, Zobac O, Lee J (2014) Cu–Ni nanoalloy phase diagram—prediction and experiment. CALPHAD 45:33–39

    Article  Google Scholar 

  85. Huang SP, Balbuena PB (2002) Melting of bimetallic Cu–Ni nanoclusters. J Phys Chem B 106:7225–7236

    Article  Google Scholar 

  86. Li G, Wang Q, Liu T, Wang K, He J (2010) Molecular dynamics simulation of the melting and coalescence in the mixed Cu–Ni nanoclusters. J Cluster Sci 21:45–55

    Article  Google Scholar 

  87. Matienseen W, Warlimont H (2005) Springer handbook of condensed matter and materials. Data Springer, Berlin

    Book  Google Scholar 

  88. Weast RC (1986–1987) CRC handbook of chemistry and physics, 67th edn. CRC Press Inc, Boca Raton

  89. Shackelford JF, Alexander W (2001) CRC material science and engineering handbook, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  90. Smithells CJ, Brandes EA (1976) Metal reference book, 5th edn. Fulmer Research Ltd Butterworth, London

    Google Scholar 

  91. Jiang Q, Lu HM, Zhao M (2004) Modelling of surface energies of elemental crystals. J Phys Condens Matter 16:521–530

    Article  Google Scholar 

  92. Magomedov MN (2004) Dependence of the surface energy on the size and shape of a nanocrystal. Phys Solid State 46:954–968

    Article  Google Scholar 

  93. Hashimoto R, Shibuta Y, Suzuki T (2011) Estimation of solid–liquid interfacial energy from Gibbs–Thomson effect: a molecular dynamics study. ISIJ Int 51:1664–1667

    Article  Google Scholar 

  94. Brillo J, Egry I, Giffard HS, Patti A (2004) Density and thermal expansion of liquid Au–Cu alloys. Int J Thermophys 25:1881–1888

    Article  Google Scholar 

  95. Lohoefer G, Brillo J, Egry I (2004) Thermophysical properties of undercooled liquid Cu–Ni alloys. Int J Thermophys 25:1535–1550

    Article  Google Scholar 

  96. Feng X, Ren-hui Y, Lan-xiao LF, Hong-kai Z (2008) Densities of molten Ni-(Cr Co W) superalloys. Trans Nonferr Met Soc China 18:24–27

    Article  Google Scholar 

  97. Feng X, Liang F, Kiyoshi N (2005) Surface tension and molten Ni and Ni–Co alloys. J Mater Sci Technol China 21:201–206

    Google Scholar 

  98. Turnbull D (1950) Formation of crystal nuclei in liquid metals. J Appl Phys 21:1022–1028

    Article  Google Scholar 

  99. Jian Z, Kuribayashi K, Jie W (2002) Solid–liquid interface energy of metals at melting point and undercooled state. Mater Trans 43:721–726

    Article  Google Scholar 

  100. Tesfaye F, Taskinen P (2010) Densities of molten and solid alloys of (Fe Cu Ni Co-S at elevated temperatures—literature review and analysis. Aalto University Publications in Materials Science and Engineering, Multiprint Oy, Espoo

    Google Scholar 

  101. Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing Limited & ASM International, Cambridge

    Book  Google Scholar 

  102. Zernike J (1955) Chemical phase theory. Deventer-Antwerp-Djakarta: N. V. Uitgevers-Maatschappij-AE. E. Kluwer

  103. Biswas M, Saha A, Dule M, Mandal TK (2014) Polymer-assisted chain-like organization of CuNi alloy nanoparticles: solvent-adoptable pseudohomogeneous catalysts for alkyne–azide click reactions with magnetic recyclability. J Phys Chem C 118:22156–22165

    Article  Google Scholar 

  104. Reshetenko TV, Avdeeva LB, Ismagilov ZR, Chuvilin AL, Ushakov VA (2003) Carbon capacious Ni–Cu-Al2O3 catalysts for methane decomposition. Appl Catal A 247:51–63

    Article  Google Scholar 

  105. Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu–Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247–A250

    Article  Google Scholar 

  106. Niu HL, Chen QW, Lin YS, Jia JY, Zhu HF, Ning M (2004) Hydrothermal formation of magnetic Ni–Cu alloy nanocrystallites at low temperatures. Nanotechnology 15:1054–1058

    Article  Google Scholar 

  107. Lee JG, Mori H, Yasuda H (2002) Alloy phase formation in nanometer-sized particles in the In-Sn system. Phys Rev B 65:132106–1–132106–4

    Google Scholar 

  108. Nam HS, Hwang NM, Yu BD, Yoon JK (2002) Formation of an icosahedral structure during the freezing of gold nanoclusters: surface-induced mechanism. Phys Rev Lett 89:275502–1–275502–4

    Article  Google Scholar 

  109. Mottet C, Rossi G, Baletto F, Ferrando R (2005) Single impurity effect on the melting of nanoclusters. Phys Rev Lett 95:035501–1–035501–4

    Article  Google Scholar 

  110. Christian JW (1965) Theory of transformation in metals and alloys. Pergamon Press, New York

    Google Scholar 

  111. Neimark A, Ravikovitch PI, Vishnyakov A (2002) Inside the hysteresis loop: multiplicity of internal states in confined fluids. Phys Rev E 65:031505-1–031505-6

    Article  Google Scholar 

  112. Gelb Lev D, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M (1999) Phase separation in confined systems. Rep Prog Phys 62:1573–1659

    Article  Google Scholar 

  113. Arabczyk W, Ekiert EA, Pelka R (2016) Hysteresis phenomenon in the reaction system of nanocrystalline iron with mixture of ammonia and hydrogen. Phys Chem Chem Phys 18:25796–25800

    Article  Google Scholar 

  114. Chushak YG, Bartell LS (2003) Freezing of Ni–Al bimetallic nanoclusters in computer simulations. J Phys Chem B 107:3747–3751

    Article  Google Scholar 

  115. Liu HB, Pal U, Perez R, Ascencio JA (2003) Structural transformation of Au–Pd bimetallic nanoclusters on thermal heating and cooling: a dynamic analysis. J Phys Chem B 110:5191–5195

    Article  Google Scholar 

  116. Kaptay G (2010) The extension of the phase rule to nano-systems and on the quaternary point in one-component nano phase diagrams. J Nanosci Nanotechnol 10(12):8164–8170

    Article  Google Scholar 

  117. Kaptay G (2012) Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J Mater Sci 47:8320–8335. doi:10.1007/s10853-012-6772-9

    Article  Google Scholar 

  118. Chen SL, Daniel S, Zhang F, Cang YA, Yan XY, Xie FY, Schmid-Fetzer R, Oates WA (2002) The PANDAT software package and its applications. CALPHAD 26:175–188

    Article  Google Scholar 

  119. Bale CW, Chartrand P, Degterov SA, Erikson G, Hack K, Ben R, Melancon J, Pelton AD, Petersen S (2002) Fact Sage thermochemical software and databases. CALPHAD 26:189–228

    Article  Google Scholar 

  120. Davies RH, Dinsdale AT, Gisby JA, Robinson JAJ, Martin SM (2002) MTDATA—thermodynamic and phase equilibrium software from the national physical laboratory. CALPHAD 26:229–271

    Article  Google Scholar 

Download references

Acknowledgements

The work has been performed in the framework of a German–Ukraine DAAD-supported collaboration Project (Ref. Codes A/14/02389, 91617129 of Program 57210259). The authors (A. S. and Y. B.) appreciate the hospitality of the University of Muenster (Germany) and fruitful discussions with colleagues from the Institute of Materials Physics. The authors gratefully thank to the referees for the constructive comments and recommendations which definitely help to improve the readability and quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aram Shirinyan.

Ethics declarations

Conflict of interest

We confirm that no conflicts of interest exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirinyan, A., Wilde, G. & Bilogorodskyy, Y. Solidification loops in the phase diagram of nanoscale alloy particles: from a specific example towards a general vision. J Mater Sci 53, 2859–2879 (2018). https://doi.org/10.1007/s10853-017-1697-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1697-y

Keywords

Navigation