Skip to main content
Log in

Hydrothermal synthesis of crednerite CuMn1−x M x O2 (M = Mg, Al; x = 0–0.08): structural characterisation and magnetic properties

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of CuMn1−x M x O2 (M = Mg, Al; x = 0–0.08) samples was prepared using the low-temperature hydrothermal method. Crednerite-type materials are obtained for a low level of substitution, i.e. up to x = 0.08, and transmission electron microscopy observations indicate that the average crystallite size decreases with an increase in x. The evolution of unit cell parameters in function of x, from Rietveld refinements using X-ray powder diffraction data, presents a distinct behaviour for both series, but corresponds in both cases to a regularisation of the triangular network in the (a, b) plane. The investigation of the structural, thermal and magnetic properties reveals that the substitution has a significant role on the magnetism in CuMn0.94M0.06O2 (M = Mg, Al). It was found that the Mg and Al substitution on the Mn site leads to a small increase in the magnetisation values at low temperature, although the particle size decreases, which can be related to a release of magnetic frustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Xu Z, Xiong D, Wang H, Zhang W, Zeng X, Ming L, Chen W, Xu X, Cui J, Wang M, Powar S, Bach U, Cheng Y-B (2014) Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates. J Mater Chem A 2:2968–2976

    Article  Google Scholar 

  2. Saadi S, Bouguelia A, Trari M (2006) Photocatalytic hydrogen evolution over CuCrO2. Sol Energy 80:272–280

    Article  Google Scholar 

  3. Nagarajan R, Draeseke AD, Sleight AW, Tate J (2001) p-type conductivity in CuCr1−x Mg x O2 films and powders. J Appl Phys 89:8022–8025

    Article  Google Scholar 

  4. Maignan A, Martin C, Frésard R, Eyert V, Guilmeau E, Hébert S, Poienar M, Pelloquin D (2009) On the strong impact of doping in the triangular antiferromagnet CuCrO2. Solid State Commun 149:962–967

    Article  Google Scholar 

  5. Okuda T, Onoe T, Beppu Y, Terada N, Doi T, Miyasaka S, Tokura Y (2007) Magnetic and transport properties of delafossite oxides CuCr1− x (Mg, Ca) xO2. J Magn Magn Mater 310:890–892

    Article  Google Scholar 

  6. Zheng SY, Jiang GS, Su JR, Zhu CF (2006) The structural and electrical property of CuCr1−x Ni x O2 delafossite compounds. Mater Lett 60:3871–3873

    Article  Google Scholar 

  7. Lekse JW, Underwood MK, Lewisand JP, Matranga C (2012) Synthesis, characterization, electronic Structure, and photocatalytic Behavior of CuGaO2 and CuGa1−x Fe x O2 (x = 0.05, 0.10, 0.15, 0.20) delafossites. J Phys Chem C 116:1865–1872

    Article  Google Scholar 

  8. Ursu D, Miclau M, Banica R, Vaszilcsin N (2015) Impact of Fe doping on performances of CuGaO2 p-type dye-sensitized solar cells. Mater Lett 143:91–93

    Article  Google Scholar 

  9. Mitsuda S, Nakajima T, Yamano M, Takahashi K, Yamazaki H, Masuda K, Kaneko Y, Terada N, Prokes K, Kiefer K (2009) Electric polarization memory effect in a magnetoelectric multiferroic CuFe1−x Ga x O2. Phys B 404:2532–2534

    Article  Google Scholar 

  10. Pachoud E, Martin C, Kundys B, Simon CH, Maignan A (2010) Spin-driven ferroelectricity in the delafossite CuFe1−x Rh x O2(0 ≤ x ≤ 0.15). J Solid State Chem 183:344–349

    Article  Google Scholar 

  11. Trari M, Topfer J, Dordor P, Grenier JC, Pouchard M, Doumerc JP (2005) Preparation and physical properties of the solid solutions of Cu1+x Mn1−x O2 (0 ≤ x ≤ 0.2). J Solid State Chem 178:2751–2758

    Article  Google Scholar 

  12. Poienar M, Vecchini C, André G, Daoud-Aladine A, Margiolaki I, Maignan A, Lappas A, Chapon L, Hervieu M, Damay F, Martin C (2011) Substitution effect on the interplane coupling in crednerite: the Cu1.04Mn0.96O2 case. Chem Mater 23:85–94

    Article  Google Scholar 

  13. Ushakov AV, Streltsov SV, Khomskii DI (2014) Orbital structure and magnetic ordering in stoichiometric and doped crednerite CuMnO2. Phys Rev B 89:024406–024411

    Article  Google Scholar 

  14. Bessekhouad Y, Gabes Y, Bouguelia A, Trari M (2007) The physical and photo electrochemical characterization of the crednerite CuMnO2. J Mater Sci 42:6469–6476. doi:10.1007/s10853-006-1250-x

    Article  Google Scholar 

  15. Abdel-Hameed SAM, Margha FH, El-Meligi AA (2014) Investigating hydrogen storage behavior of CuMnO2 glass-ceramic material. Int J Energy Res 38:459–465

    Article  Google Scholar 

  16. Kato S, Fujimaki R, Ogasawara M, Wakabayashi T, Nakahara Y, Nakata S (2009) Oxygen storage capacity of CuMO2 (M = Al, Fe, Mn, Ga) with a delafossite-type structure. Appl Catal B 89:183–188

    Article  Google Scholar 

  17. Bellal B, Hadjarab B, Benreguia N, Bessekhouad Y, Trari M (2011) Photoelectrochemical characterization of the synthetic crednerite CuMnO2. J Appl Electrochem 41:867–872

    Article  Google Scholar 

  18. Zhang Q, Xiong D, Li H, Xia D, Tao H, Zhao X (2015) A facile hydrothermal route to synthesize delafossite CuMnO2 nanocrystals. J Mater Sci Mater Electron 26:10159–10163. doi:10.1007/s10854-015-3702-z

    Article  Google Scholar 

  19. Xiong D, Zhang Q, Du Z, Kumar Verma S, Lia H, Zhao X (2016) Low temperature hydrothermal synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals, New. New J Chem 40:6498–6504

    Article  Google Scholar 

  20. Rueff JM, Poienar M, Guesdon A, Martin C, Maignan A, Jaffrès PA (2016) Hydrothermal synthesis for new multifunctional materials: a few examples of phosphates and phosphonate-based hybrid materials. J Solid State Chem 236:236–245

    Article  Google Scholar 

  21. Kondrashev ID (1959) The crystal structure and composition of crednerite CuMnO2. Sov Phys Crystallogr 3:703–706

    Google Scholar 

  22. Asbrink S, Norrby L-J (1970) A refinement of the crystal structure of copper (II) oxide with a discussion of some exceptional e.s.d’.s. Acta Crystallogr B 26:8–15

    Article  Google Scholar 

  23. Shannon RD, Rogers DB, Prewitt CT (1971) Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorg Chem 10:713–718

    Article  Google Scholar 

  24. Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides. Part I. Periodic structures. Spectrochim Acta Part A 60:689–700

    Article  Google Scholar 

  25. Kebin L, Xijun L, Kaigui Z, Jingsheng Z, Yuheng Z (1997) Infrared absorption spectra of manganese oxides La1−x−yRyCa x MnO3−δ. J Appl Phys 81:6943–6947

    Article  Google Scholar 

  26. Amrute AP, Lodziana Z, Mondelli C, Krumeich F, Perez-Ramirez J (2013) Solid-state chemistry of cuprous delafossites: synthesis and stability aspects. Chem Mater 25:4423–4435

    Article  Google Scholar 

  27. Doumerc P, Trari M, Topfer J, Fournes L, Grenier JC, Pouchard M, Hagenmuller P (1994) Magnetic-properties of the crednerite CuMnO2. Eur J Solid State Inorg Chem 31:705–715

    Google Scholar 

  28. Damay F, Poienar M, Martin C, Maignan A, Rodriguez-Carvajal J, André G, Doumerc JP (2009) Spin-lattice coupling induced phase transition in the S = 2 frustrated antiferromagnet CuMnO2. Phys Rev B 80:094410–094417

    Article  Google Scholar 

  29. Zhang N, Yang W, Ding W, Xing D, Du Y (1999) Grain size-dependent magnetism in fine particle perovskite, La1−x Sr x MnO z . Solid State Commun 109:537–542

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-2179. We thank to Bogdan Taranu, Catalin Ianasi, Antoine Maignan and Richard Retoux for materials characterisation and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Poienar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poienar, M., Sfirloaga, P., Martin, C. et al. Hydrothermal synthesis of crednerite CuMn1−x M x O2 (M = Mg, Al; x = 0–0.08): structural characterisation and magnetic properties. J Mater Sci 53, 2389–2395 (2018). https://doi.org/10.1007/s10853-017-1696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1696-z

Keywords

Navigation