Skip to main content

Advertisement

Log in

Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite with synergistic effect for high performance of lithium–sulfur batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lithium–sulfur battery has been considered as a promising electrochemical energy storage system based on its theoretical energy density. However, its practical application is hindered by poor conductivity of sulfur and the shuttle effect. Herein, a hierarchical three-dimensional nitrogen and phosphorous codoped graphene and carbon nanotubes with 70 wt% of sulfur content (N, P codoped G/CNTs-S70) composite was prepared using melamine phosphate as a single precursor of N and P. The simultaneous introduction of N and P creates high active sites on the G/CNTs backbones, restricts the detachments of sulfur from the host G/CNTs, and induces strong chemical adsorption of the dissolution of lithium polysulfides. The as-prepared N, P codoped G/CNTs-S70 composite delivers a high initial discharge capacity of 1550 mA h g−1 and retains a capacity of 735 mA h g−1 after 200 cycles at 0.5  C. This is a significant improvement in the rate capability and cycling stability compared with the un-doped G/CNTs-S70 cathode. This simple strategy with single precursor offers promising electrochemical properties for Li–S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Xiao P, Bu F, Yang G, Zhang Y, Xu Y (2017) Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium–sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv Mater. doi:10.1002/adma.201703324

    Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  3. Zhao Y, Liu M, Lv W, He Y-B, Wang C, Yun Q, Li B, Kang F, Yang Q-H (2016) Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium–sulfur battery. Nano Energy 30:1–8

    Article  Google Scholar 

  4. Yao X, Huang N, Han F, Zhang Q, Wan H, Mwizerwa JP, Wang C, Xu X (2017) High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv Energy Mater 7:1602923

    Article  Google Scholar 

  5. Ji XL, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20:9821–9826

    Article  Google Scholar 

  6. Evers S, Nazar LF (2012) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46:1135–1143

    Article  Google Scholar 

  7. Xue W, Yan Q-B, Xu G, Suo L, Chen Y, Wang C, Wang C-A, Li J (2017) Double-oxide sulfur host for advanced lithium–sulfur batteries. Nano Energy 38:12–18

    Article  Google Scholar 

  8. Manthiram A, Fu Y, Su Y-S (2013) Challenges and prospects of lithium–sulfur battery. Acc Chem Res 46:1125–1134

    Article  Google Scholar 

  9. Thieme S, Bruckner J, Bauer I, Oschatz M, Borchardt L, Althues H, Kaskel S (2013) High capacity micro-mesoporous carbon-sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure. J Mater Chem A 1:9225–9234

    Article  Google Scholar 

  10. Rehman S, Tang T, Ali Z, Huang X, Hou Y (2017) Integrated design of MnO2 @carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 13:1700087

    Article  Google Scholar 

  11. Xiao Z, Yang Z, Nie H, Lu Y, Yang K, Huang S (2014) Porous carbon nanotubes etched by water steam for high-rate large-capacity lithium–sulfur batteries. J Mater Chem A 2:8683–8689

    Article  Google Scholar 

  12. Zhang L, Ji L, Glans PA, Zhang Y, Zhu J, Guo J (2012) Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium–sulfur cells. Phys Chem Chem Phys 14:13670

    Article  Google Scholar 

  13. Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114:11751–11787

    Article  Google Scholar 

  14. Kang W, Deng N, Ju J, Li Q, Wu D, Ma X, Li L, Naebe M, Cheng B (2016) A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale 8:16541–16588

    Article  Google Scholar 

  15. Peng HJ, Zhang Q (2015) Designing host materials for sulfur cathodes: from physical confinement to surface chemistry. Angew Chem Int Ed 54:11018–11020

    Article  Google Scholar 

  16. Li QZ, Li YH, Li YJ, Liu YN (2014) One-step hydrothermal preparation and electrochemical performance of graphene/sulfur cathode composites. Acta Phys-Chim Sin 30:1474–1480

    Google Scholar 

  17. Xu C, Wu Y, Zhao X, Wang X, Du G, Zhang J, Tu J (2015) Sulfur/three-dimensional graphene composite for high performance lithium–sulfur batteries. J Power Sour 275:22–25

    Article  Google Scholar 

  18. Tang C, Zhang Q, Zhao MQ, Huang JQ, Cheng XB, Tian GL, Peng HJ, Wei F (2014) Lithium–sulfur batteries: nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium–sulfur batteries. Adv Mater 26:6100–6105

    Article  Google Scholar 

  19. Walle MD, Zhang Z, You X, Zhang M, Chabu JM, Li Y, Liu Y-N (2016) Soft approach hydrothermal synthesis of a 3D sulfur/graphene/multiwalled carbon nanotube cathode for lithium–sulfur batteries. RSC Adv 6:78994–78998

    Article  Google Scholar 

  20. Su D, Cortie M, Wang G (2017) Lithium–sulfur batteries: fabrication of n-doped graphene–carbon nanotube hybrids from prussian blue for lithium–sulfur batteries. Adv Energy Mater 7:1602014

    Article  Google Scholar 

  21. Mi K, Chen S, Xi B, Kai S, Jiang Y, Feng J, Qian Y, Xiong S (2017) Sole Chemical confinement of polysulfides on nonporous nitrogen/oxygen dual-doped carbon at the kilogram scale for lithium–sulfur batteries. Adv Funct Mater 27:1604265

    Article  Google Scholar 

  22. Lee JH, Park N, Kim BG, Jung DS, Im K, Hur J, Choi JW (2013) Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7:9366–9374

    Article  Google Scholar 

  23. Pu X, Yang G, Yu C (2014) Liquid-type cathode enabled by 3D sponge-like carbon nanotubes for high energy density and long cycling life of Li–S batteries. Adv Mater 26:7456–7461

    Article  Google Scholar 

  24. Zhou G, Paek E, Hwang GS, Manthiram A (2015) Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760

    Article  Google Scholar 

  25. Zhang J, Shi Y, Ding Y, Peng L, Zhang W, Yu G (2017) A conductive molecular framework derived Li2S/N, P-codoped carbon cathode for advanced lithium–sulfur batteries. Adv Energy Mater 7:1602876

    Article  Google Scholar 

  26. Zhang Z, Kong LL, Liu S, Li GR, Gao XP (2017) A High-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium–sulfur battery. Adv Energy Mater 7:1602543

    Article  Google Scholar 

  27. Li L, Zhou G, Weng Z, Shan X-Y, Li F, Cheng H-M (2014) Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon 67:500–507

    Article  Google Scholar 

  28. Chang N, Zhou C, Fu H, Zhao Y, Shui J (2017) One-pot synthesis of functionalized holey graphene/sulfur composite for lithium–sulfur batteries. Adv Mater Interfaces. doi:10.1002/admi.201700783

    Google Scholar 

  29. Carter R, Ejorh D, Share K, Cohn AP, Douglas A, Muralidharan N, Tovar TM, Pint CL (2016) Surface oxidized mesoporous carbons derived from porous silicon as dual polysulfide confinement and anchoring cathodes in lithium sulfur batteries. J Power Sour 330:70–77

    Article  Google Scholar 

  30. Cao J, Chen C, Zhao Q, Zhang N, Lu Q, Wang X, Niu Z, Chen J (2016) A Flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium–sulfur batteries with unconventional configurations. Adv Mater 28:9629–9636

    Article  Google Scholar 

  31. Zhou G, Zhao Y, Manthiram A (2015) Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li–S batteries. Adv Energy Mater 5:1402263

    Article  Google Scholar 

  32. Zegeye TA, Tsai M-C, Cheng J-H, Lin M-H, Chen H-M, Rick J, Su W-N, Kuo C-FJ, Hwang B-J (2017) Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium–sulfur batteries. J Power Sour 353:298–311

    Article  Google Scholar 

  33. Duan J, Chen S, Jaroniec M, Qiao SZ (2015) Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal 5:5207–5234

    Article  Google Scholar 

  34. Li Y, Zhan H, Liu S, Huang K, Zhou Y (2010) Electrochemical properties of the soluble reduction products in rechargeable Li/S battery. J Power Sour 195:2945–2949

    Article  Google Scholar 

  35. Liu L-J, Chen Y, Zhang Z-F, You X-L, Walle MD, Li Y-J, Liu Y-N (2016) Electrochemical reaction of sulfur cathodes with Ni foam current collector in Li–S batteries. J Power Sour 325:301–305

    Article  Google Scholar 

  36. Xing L-B, Xi K, Li Q, Su Z, Lai C, Zhao X, Kumar RV (2016) Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium–sulfur batteries. J Power Sour 303:22–28

    Article  Google Scholar 

  37. Zhang H, Zuo P, Hua J, Ma Y, Du C, Cheng X, Gao Y, Yin G (2017) Improved rate performance of lithium sulfur batteries by in-situ anchoring of lithium iodide in carbon/sulfur cathode. Electrochim Acta 238:257–262

    Article  Google Scholar 

  38. Kong W, Yan L, Luo Y, Wang D, Jiang K, Li Q, Fan S, Wang J (2017) Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li–S batteries. Adv Energy Mater 27:1606663

    Google Scholar 

  39. Li L, Chen L, Mukherjee S, Gao J, Sun H, Liu Z, Ma X, Gupta T, Singh CV, Ren W, Cheng H-M, Koratkar N (2016) Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium–sulfur batteries. Adv Mater 29:1602734

    Article  Google Scholar 

  40. Hencz L, Gu X, Zhou X, Martens W, Zhang S (2017) Highly porous nitrogen-doped seaweed carbon for high-performance lithium–sulfur batteries. J Mater Sci 52:12336–12347. doi:10.1007/s10853-017-1288-y

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21676304 and 21636010) and the Hunan Provincial Science and Technology Plan Project (No. 2017TP1001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajuan Li or You-Nian Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7674 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walle, M.D., Zhang, Z., Zhang, M. et al. Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite with synergistic effect for high performance of lithium–sulfur batteries. J Mater Sci 53, 2685–2696 (2018). https://doi.org/10.1007/s10853-017-1678-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1678-1

Keywords

Navigation