Skip to main content

Luminescence and gas-sensing properties of ZnO obtained from the recycling of alkaline batteries

Abstract

The great amount of wasted alkaline batteries produced nowadays constitutes a driving force for obtaining valuable materials from the recycling process. Zn is one of the major components of the batteries residues; hence, the possibility to obtain good quality ZnO appears very attractive. In this work, we have characterized ZnO obtained by different synthesis routes from the black mass produced during the mechanical recycling process. The luminescent behaviour has been studied and compared to that of the commercial ZnO. Chromaticity has been analysed through the corresponding CIE [Commission Internationale d’Eclairage (CIE) 1931] coordinates, obtained from the emission spectra. The possible response to gases from the ZnO obtained from the different sources has been also investigated. While ZnO from recycling does not show an appreciable gas sensitivity, the possibility to follow different calcination routes and hence obtaining ZnO with different defect structures and luminescent behaviour open the way to tailor the colour of the emitted light.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doǧan S et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:1–103. doi:10.1063/1.1992666

    Article  Google Scholar 

  2. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:S35–S44. doi:10.1088/0268-1242/20/4/004

    Article  Google Scholar 

  3. Gorla CR, Emanetoglu NW, Liang S, Mayo WE, Lu Y, Wraback M et al (1999) Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011̄2) sapphire by metalorganic chemical vapor deposition. J Appl Phys 85:2595–2602. doi:10.1063/1.369577

    Article  Google Scholar 

  4. Brett MJ, Parsons RR, Baltes HP (1986) Zinc oxide multilayers for solar collector coatings. Appl Opt 25:2712–2714. doi:10.1364/AO.25.002712

    Article  Google Scholar 

  5. Shokry Hassan H, Kashyout AB, Morsi I, Nasser AAA, Ali I (2014) Synthesis, characterization and fabrication of gas sensor devices using ZnO and ZnO: in nanomaterials. Beni-Suef Univ J Basic Appl Sci 3:216–221. doi:10.1016/j.bjbas.2014.10.007

    Article  Google Scholar 

  6. Dietl T (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022. doi:10.1126/science.287.5455.1019

    Article  Google Scholar 

  7. Vispute RD, Talyansky V, Choopun S, Sharma RP, Venkatesan T, He M et al (1998) Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl Phys Lett 73:348–350. doi:10.1063/1.121830

    Article  Google Scholar 

  8. Dikovska AO, Atanasov PA, Tonchev S, Ferreira J, Escoubas L (2007) Periodically structured ZnO thin films for optical gas sensor application. Sens Actuators A Phys 140:19–23. doi:10.1016/j.sna.2007.05.032

    Article  Google Scholar 

  9. López FA, Cebriano T, García-Díaz I, Fernández P, Rodríguez O, Fernández AL (2017) Synthesis and microstructural properties of zinc oxide nanoparticles prepared by selective leaching of zinc from spent alkaline batteries using ammoniacal ammonium carbonate. J Clean Prod 148:795–803. doi:10.1016/j.jclepro.2017.02.031

    Article  Google Scholar 

  10. Cebriano TA, García-Díaz I, López-Fernández A, Fernández P, López FA (2017) Synthesis and characterization of ZnO micro- and nanostructures grown from recovered ZnO from spent alkaline batteries. J Environ Chem Eng 5:2903–2911

    Article  Google Scholar 

  11. Radoi R, Fernández P, Piqueras J, Wiggins MS, Solis J (2003) Luminescence properties of mechanically milled and laser irradiated ZnO. Nanotechnology 14:794–798. doi:10.1088/0957-4484/14/7/317

    Article  Google Scholar 

  12. Addou M, Ebothé J, El Hichou A, Bougrine A, Bubendorff JL, Troyon M et al (2012) Cathodoluminescence properties of Zno thin films. In: Yamamoto N (ed) Cathodoluminescence. InTech, doi:10.5772/33737. https://www.intechopen.com/books/cathodoluminescence/cathodoluminescence-properties-of-zno-thin-films-

  13. Lin B, Fu Z, Jia Y (2001) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 79:943–945. doi:10.1063/1.1394173

    Article  Google Scholar 

  14. Ohashi N, Ebisawa N, Sekiguchi T, Sakaguchi I, Wada Y, Takenaka T et al (2005) Yellowish–white luminescence in codoped zinc oxide. Appl Phys Lett 86:91902-1–91902-3. doi:10.1063/1.1871349

    Article  Google Scholar 

  15. Liu X, Wu X, Cao H, Chang RPH (2004) Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J Appl Phys 95:3141–3147. doi:10.1063/1.1646440

    Article  Google Scholar 

  16. Rasool SN, Moorthy LR, Jayasankar CK (2013) Optical and luminescence properties of Eu3 + -doped phosphate based glasses. Mater Exp 3:231–240. doi:10.1166/mex.2013.1123

    Article  Google Scholar 

  17. Chu X, Chen T, Zhang W, Zheng B, Shui H (2009) Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sens Actuators B Chem 142:49–54. doi:10.1016/j.snb.2009.07.049

    Article  Google Scholar 

  18. Yoon DH, Choi GM (1997) Microstructure and CO gas sensing properties of porous ZnO produced by starch addition. Sens Actuators B Chem 45:251–257. doi:10.1016/S0925-4005(97)00316-X

    Article  Google Scholar 

  19. Chaabouni F, Abaab M, Rezig B (2004) Metrological characteristics of ZNO oxygen sensor at room temperature. Sens Actuators B Chem 100:200–204. doi:10.1016/j.snb.2003.12.059

    Article  Google Scholar 

  20. Takata M, Tsubone D, Yanagida H (1976) Dependence of electrical conductivity of ZnO on degree of sintering. J Am Ceram Soc 59:4–8. doi:10.1111/j.1151-2916.1976.tb09374.x

    Article  Google Scholar 

  21. Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens Actuators B Chem 115:247–251. doi:10.1016/j.snb.2005.09.008

    Article  Google Scholar 

  22. Ge C, Xie C, Cai S (2007) Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating. Mater Sci Eng B 137:53–58. doi:10.1016/j.mseb.2006.10.006

    Article  Google Scholar 

  23. Escalante G, Juárez H, Fernández P (2017) Characterization and sensing properties of ZnO film prepared by single source chemical vapor deposition. Adv Powder Technol 28:23–29. doi:10.1016/j.apt.2016.07.005

    Article  Google Scholar 

  24. Tang H, Li Y, Zheng C, Yen J, Hou X, Lv Y (2007) An ethanol sensor based on cataluminescence on ZnO particles. Talanta 72:1593–1597

    Article  Google Scholar 

  25. Shi JJ, Li JJ, Zhu YF, Wei F, Zhang XR (2002) Nanosized SrCO3—based chemiluminescence sensor for ethanol. Anal Chim Acta 466:69–78

    Article  Google Scholar 

  26. Santra S, De Luca A, Bhaumik S, Ali SZ, Udrea F, Gardner JW, Ray SK, Guha PK (2015) Dip pen nanolithography-deposited zinc oxide nanorods on a CMOS MEMS platform for ethanol sensing. RSC Adv. 5:47609–47616

    Article  Google Scholar 

  27. van Dijken A, Meulenkamp E, Vanmaekelbergh D, Meijerink A (2000) The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission. J Lumin 87–89:454–456. doi:10.1016/S0022-2313(99)00482-2

    Article  Google Scholar 

  28. Wang L, Kang Y, Liu X, Zhang S, Huang W, Wang S (2012) ZnO nanorod gas sensor for ethanol detection. Sens Actuators B Chem. 162:237–243. doi:10.1016/j.snb.2011.12.073

    Article  Google Scholar 

  29. Wei S, Wang S, Zhang Y, Zhou M (2014) Chemical different morphologies of ZnO and their ethanol sensing property. Sens Actuators B. Chem 192:480–487. doi:10.1016/j.snb.2013.11.034

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by MINECO/FEDER (MAT2015-65274-R; 2016-2019) and EnvirobatEspaña S. L. G. Escalante wishes to acknowledge CONACYT for the postdoc Grant I. García-Díaz MINECO/FEDER by the Postdoctoral Junior Grants (Ref. FPDI-2013-16391) contracts co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paloma Fernández.

Additional information

Germán Escalante: On leave from Centro de Investigación en Dispositivos Semiconductores, Univ. Autónoma de Puebla, 72570, Puebla, México

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sardá, C., Escalante, G., García-Díaz, I. et al. Luminescence and gas-sensing properties of ZnO obtained from the recycling of alkaline batteries. J Mater Sci 53, 2026–2033 (2018). https://doi.org/10.1007/s10853-017-1667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1667-4

Keywords

  • Commission Internationale d’Eclairage (CIE)
  • Calcination Route
  • Mechanical Recycling Process
  • Ethanol Pressure
  • Cathodoluminescence (CL)