Advertisement

Journal of Materials Science

, Volume 53, Issue 3, pp 1862–1873 | Cite as

Efficient solvothermal synthesis of highly porous UiO-66 nanocrystals in dimethylformamide-free media

  • Luis A. Lozano
  • Clara M. Iglesias
  • Betina M.C. Faroldi
  • María A. Ulla
  • Juan M. ZamaroEmail author
Chemical routes to materials

Abstract

The UiO-66 metal–organic framework has remarkable physicochemical characteristics which have positioned it as one of the Zr-MOFs with greater potential for application in diverse processes. However, it remains a challenge how to optimize the synthesis methods so as to obtain this material with high yield and good porous properties under more eco-compatible conditions. In this work, we report the solvothermal synthesis of UiO-66 nanocrystals with high surface area using acetone as the synthesis medium, replacing the traditional and toxic N,N-dimethylformamide. The effects of solvents, reactant concentration, temperature, synthesis time and mixture protocol on the material properties were characterized by XRD, SEM–EDS, FTIR, TGA-SDTA and N 2 adsorption isotherms. The sample obtained in pure acetone employing the optimized protocol exhibited spherical nanoparticles 150 nm in size and presented the greatest relative crystallinity. The alternative protocol allowed obtaining UiO-66 with high yields (~ 91%) without employing DMF, under mild conditions (80 °C), in the form of nanocrystals with high specific surface area (1299 m2 g−1) that can be activated by simple drying at 130 °C and atmospheric pressure. The MOF obtained in acetone under optimum conditions showed reversible CO2 uptake capacity at room temperature and low pressures as determined by both CO2 isotherms and TGA-CO2 tests.

Notes

Acknowledgements

The authors thank to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) from Argentina and also to Prof. José Fernandez for his kind collaboration in the SEM–EDS analyses. This study was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) of Argentina (PICT No. 1299), and Universidad Nacional del Litoral, Argentina (CAI + D No. 0486).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2017_1658_MOESM1_ESM.doc (6.4 mb)
Supplementary information Reported properties and synthesis conditions for UiO-66 synthesized in mixtures with N,N-Dimethylformamide. XRD patterns of the solids obtained in 93% v/v acetone-DMF and 93% v/v-ethanol-DMF at different temperatures. EDS-mapping analysis of the UiO-66 crystals obtained in acetone using different Zr:BDC:acetone molar ratios (DOC 6555 kb)

References

  1. 1.
    Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851CrossRefGoogle Scholar
  2. 2.
    Chavan S, Vitillo JG, Gianolio D, Zavorotynska O, Civalleri B, Jakobsen S, Nilsen MH, Valenzano L, Lamberti C, Lillerud KP, Bordiga S (2012) H2 storage in isostructural UiO-67 and UiO-66 MOF. Phys Chem Chem Phys 14:1614–1626CrossRefGoogle Scholar
  3. 3.
    Wiersum AD, Soubeyrand-Lenoir E, Yang Q, Moulin B, Guillerm V, Yahia MB, Bourrelly S, Vimont A, Miller S, Vagner C, Daturi M, Clet G, Serre C, Maurin G, Llewellyn PL (2011) An evaluation of UiO-66 for gas-based applications. Chem Asian J 6:3270–3280CrossRefGoogle Scholar
  4. 4.
    Abid HR, Tian H, Ang H, Tade MO, Buckley CE, Wang S (2012) Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chem Eng J 187:415–420CrossRefGoogle Scholar
  5. 5.
    Bozbiyik B, Duerinck T, Lannoeye J, De Vos D, Baron G, Denayer J (2014) Adsorption and separation of n-hexane and cyclohexane on the UiO-66 metal–organic framework. Microporous Mesoporous Mater 183:143–149CrossRefGoogle Scholar
  6. 6.
    Zhu X, Gu J, Wang Y, Li B, Li Y, Zhao W, Shi J (2014) Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem Commun 50:8779–8782CrossRefGoogle Scholar
  7. 7.
    Lu Z, Wu M, Wu S, Yang S, Li Y, Liu X, Zheng L, Cao Q, Ding Z (2016) Modulating optical properties of AIE fluophor confined within UiO-66′s nanochannels for chemical sensing. Nanoscale 40:17489–17495CrossRefGoogle Scholar
  8. 8.
    Timofeevaa M, Panchenko V, Won Jun J, Hasan Z, Matrosova M, Hwa Jhung S (2014) Effects of linker substitution on catalytic properties of porous zirconium terephthalate UiO-66 in acetalization of benzaldehyde with methanol. Appl Catal A Gen 471:91–97CrossRefGoogle Scholar
  9. 9.
    Kim S-N, Lee Y-R, Hong S-H, Jang M-S, Ahn W-S (2015) Pilot-scale synthesis of a zirconium-benzenedicarboxylate UiO-66 for CO2 adsorption and catalysis. Catal Today 245:54–60CrossRefGoogle Scholar
  10. 10.
    Gökpinar S, Diment T, Janiak C (2017) Environmentally benign dry-gel conversions of Zr-based UiO metal–organic frameworks with high yield and possibility of solvent re-use. Dalton Trans 46:9895–9900CrossRefGoogle Scholar
  11. 11.
    Zou C, Vagin S, Kronast A, Rieger B (2016) Template mediated and solvent-free route to a variety of UiO-66 metal–organic frameworks. RSC Adv 6:102968–102971CrossRefGoogle Scholar
  12. 12.
    Seoane B, Zamaro J, Téllez C, Coronas J (2012) Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20). Cryst Eng Comm 14:3103–3107CrossRefGoogle Scholar
  13. 13.
    Li Y, Liu Y, Gao W, Zhang L, Liu W, Lu J, Wang Z, Deng Y-J (2014) Microwave-assisted synthesis of UIO-66 and its adsorption performance towards dyes. Cryst Eng Comm 16:7037–7042CrossRefGoogle Scholar
  14. 14.
    Faustini M, Kim J, Jeong G-Y, Kim J, Moon H, Ahn W-S, Kim D-P (2013) Microfluidic approach toward continuous and ultra-fast synthesis of metal–organic framework crystals and hetero-structures in confined microdroplets. J Am Chem Soc 135:14619–14626CrossRefGoogle Scholar
  15. 15.
    Bai Y, Dou Y, Xie L, Rutledge W, Li J, Zhou H (2016) Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45:2327–2367CrossRefGoogle Scholar
  16. 16.
    Ragon F, Horcajada P, Chevreau H, Hwang YK, Lee U-H, Miller SR, Devic T, Chang J-S, Serre C (2014) In situ energy-dispersive X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66. Inorg Chem 53:2491–2500CrossRefGoogle Scholar
  17. 17.
    Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P (2011) Modulated synthesis of Zr-based metal–organic frameworks: from nano to single crystals. Chem Eur J 17:6643–6651CrossRefGoogle Scholar
  18. 18.
    Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun 49:9449–9451CrossRefGoogle Scholar
  19. 19.
    Vermoortele F, Bueken B, Le Bars G, Van de Voorde B, Vandichel M, Houthoofd K, Vimont A, Daturi M, Waroquier M, Van Speybroeck V, Kirschhock C, De Vos DE (2013) Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66(Zr). J Am Chem Soc 135:11465–11468CrossRefGoogle Scholar
  20. 20.
    Ren J, Langmi HW, North BC, Mathe M, Bessarabov D (2014) Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications. Int J Hydrogen Energy 39:890–895CrossRefGoogle Scholar
  21. 21.
    Han Y, Liu M, Li K, Zuo Y, Wei Y, Xu S, Zhang G, Song C, Zhang Z, Guo X (2015) Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. Cryst Eng Comm 17:6434–6440CrossRefGoogle Scholar
  22. 22.
    Abid HR, Pham GH, Ang H-M, Tade MO, Wang S (2012) Adsorption of CH4 and CO2 on Zr-metal organic frameworks. J Coll Interface Sci 366:120–124CrossRefGoogle Scholar
  23. 23.
    Hu Z, Castano I, Wang S, Wang Y, Peng Y, Qian Y, Chi C, Wang X, Zhao D (2016) Modulator effects on the water-based synthesis of Zr/Hf metal–organic frameworks: quantitative relationship studies between modulator, synthetic condition, and performance. Cryst Growth Des 16:2295–2301CrossRefGoogle Scholar
  24. 24.
    Zhao Q, Yuan W, Liang J, Li J (2013) Synthesis and hydrogen storage studies of metal–organic framework UiO-66. Int J Hydrogen Energy 38:13104–13109CrossRefGoogle Scholar
  25. 25.
    Hu Z, Peng Y, Kang Z, Qian Y, Zhao D (2015) A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs. Inorg Chem 54:4862–4868CrossRefGoogle Scholar
  26. 26.
    Redlich C, Beckett WS, Sparer J, Barwick KW, Riely CA, Miller H, Sigal SL, Shalat SL, Cullen MR (1988) Liver disease associated with occupational exposure to the solvent dimethylformamide. Ann Intern Med 108:680–686CrossRefGoogle Scholar
  27. 27.
    Dong X, Huang K, Liu S, Ren R, Jin W, Lin YS (2012) Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination. J Mater Chem 22:19222–19227CrossRefGoogle Scholar
  28. 28.
    Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater 22:6632–6640CrossRefGoogle Scholar
  29. 29.
    US Environmental Protection Agency (1999) SIDS Initial Assessment Report: Acetone. Report for the 9th SIAM. FranceGoogle Scholar
  30. 30.
    Gales L, Mendes A, Costa C (2000) Hysteresis in the cyclic adsorption of acetone, ethanol and ethyl acetate on activated carbon. Carbon 38:1083–1088CrossRefGoogle Scholar
  31. 31.
    Mondloch JE, Bury W, Fairen-Jimenez D, Kwon S, DeMarco EJ, Weston MH, Sarjeant AA, Nguyen ST, Stair PC, Snurr RQ, Farha OK, Hupp JT (2013) Vapor-phase metalation by atomic layer deposition in a metal–organic framework. J Am Chem Soc 135:10294–10297CrossRefGoogle Scholar
  32. 32.
    Wang TC, Bury W, Gómez-Gualdron DA, Vermeulen NA, Mondloch JE, Deria P, Zhang K, Moghadam PZ, Sarjeant AA, Snurr RQ, Stoddart JF, Hupp JT, Farha OK (2015) Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J Am Chem Soc 137:3585–3591CrossRefGoogle Scholar
  33. 33.
    Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen MH, Jakobsen S, Lillerud KP, Lamberti C (2011) Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater 23:1700–1718CrossRefGoogle Scholar
  34. 34.
    Li C-P, Du M (2011) Role of solvents in coordination supramolecular systems. Chem Commun 47:5958–5972CrossRefGoogle Scholar
  35. 35.
    Bustamante E, Fernández J, Zamaro J (2014) Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J Coll Interface Sci 424:37–43CrossRefGoogle Scholar
  36. 36.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069CrossRefGoogle Scholar
  37. 37.
    Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W (2013) Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532CrossRefGoogle Scholar
  38. 38.
    Ghosh P, Colón YJ, Snurr RQ (2014) Water adsorption in UiO-66: the importance of defects. Chem Commun 50:11329–11331CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Catálisis y PetroquímicaINCAPE (FIQ, UNL, CONICET)Santa FeArgentina

Personalised recommendations