Skip to main content

Advertisement

Log in

Design of broad-spectrum antimicrobial polyethylene terephthalate fabrics by coating composited natural brucites

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, antimicrobial polyethylene terephthalate (PET) fabrics were prepared by coating composited natural brucites with three different particle sizes (1250, 2500 and 5000 mesh) in different mass ratios (1:1:1, 1:1:2, 1:2:1 and 2:1:1) on PET fabrics. The PET fabrics were combined with the brucites using waterborne polyurethane by physical adsorption. The percent reduction of antimicrobial PET fabrics against Staphylococcus aureus reached 100%, and the antimicrobial grade against A. niger reached 0 grade. In addition, the antimicrobial PET fabrics prepared in mass ratio of 1:1:1 showed a better antimicrobial property against Escherichia coli and Candida albicans than the others, which reached 99.73 and 95.23%, respectively. Moreover, the laundering durability of antimicrobial PET fabrics was good. Therefore, the magnesium-based antimicrobial PET fabrics could be used in biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lechat C, Bunsell AR, Davies P (2011) Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres. J Mater Sci 46:528–533. doi:10.1007/s10853-010-4999-x

    Article  Google Scholar 

  2. Li YW, Ji S, Chen YY, Zhang H, Gong YM, Guo J (2016) Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers. Appl Surf Sci 388:331–338

    Article  Google Scholar 

  3. Jaganathan SK, Balaji A, Vellayappan MV, Subramanian AP, John AA, Asokan MK, Supriyanto E (2015) Review: radiation-induced surface modification of polymers for biomaterial application. J Mater Sci 50:2007–2018. doi:10.1007/s10853-014-8718-x

    Article  Google Scholar 

  4. Gan XP, Wu YT, Liu L, Shen B, Hu WB (2007) Electroless copper plating on PET fabrics using hypophosphite as reducing agent. Surf Coat Technol 201:7018–7023

    Article  Google Scholar 

  5. Avis RD, El-Shafei A, Hauser P (2011) Use of atmospheric pressure plasma to confer durable water repellent functionality and antimicrobial functionality on cotton/PET blend. Surf Coat Technol 205:4791–4797

    Article  Google Scholar 

  6. Moazami A, Montazer M, Dolatabadi MK (2016) Tunable functional properties on PET fabric using simultaneous green reduction of graphene oxide and silver nitrate. Fiber Polym 17:1359–1370

    Article  Google Scholar 

  7. Majumdar A, Butola BS, Thakur S (2015) Development and performance optimization of knitted antibacterial materials using PET-silver nanocomposite fibres. Mater Sci Eng, C 54:26–31

    Article  Google Scholar 

  8. Elango M, Deepa M, Subramanian R, Musthafa AM (2017) Synthesis, characterization of polyindole/Ag-ZnO nanocomposites and its antibacterial activity. J Alloy Compd 696:391–401

    Article  Google Scholar 

  9. Mohammadi M, Karimil L, Mirjalili M (2016) Simultaneous synthesis of nano ZnO and surface modification of PET fabric. Fiber Polym 17:1371–1377

    Article  Google Scholar 

  10. Ibrahim NA, Eid BM, Youssef MA, Ibrahim HM, Ameen HA, Salah AM (2013) Multifunctional finishing of cellulosic/PET blended fabrics. Carbohyd Polym 97:783–793

    Article  Google Scholar 

  11. Shinde VV, Kim JH, Patil PS (2013) One-step synthesis and characterization of anisotropic silver nanoparticles: application for enhanced antibacterial activity of natural fabric. J Mater Sci 48:8393–8401. doi:10.1007/s10853-013-7651-8

    Article  Google Scholar 

  12. Mihailović D, Šaponjić Z, Radoičić M, Radetić T, Jovančić P, Nedeljković J, Radetić M (2010) Functionalization of PET fabrics with alginates and TiO2 nanoparticles. Carbohyd Polym 79:526–532

    Article  Google Scholar 

  13. Yang SX, Zhang YH, Yu JM, Zhen ZC, Huang TZ, Tang Q, Chu PK, Qi L, Lv HB (2014) Antibacterial and mechanical properties of honeycomb ceramic materials incorporated with silver and zinc. Mater Des 59:461–465

    Article  Google Scholar 

  14. Meincke T, Pacheco VM, Hoffmann D, Boccaccini AR, Taylor RNK (2017) Engineering the surface functionality of 45S5 bioactive glass-based scaffolds by the heterogeneous nucleation and growth of silver particles. J Mater Sci 52:9082–9090. doi:10.1007/s10853-017-0877-0

    Article  Google Scholar 

  15. Kumar M, Bala R, Gondil VS, Pandey SK, Chhibber S, Jain DVS, Sharma RK, Wangoo N (2017) Combating food pathogens using sodium benzoate functionalized silver nanoparticles: synthesis, characterization and antimicrobial evaluation. J Mater Sci 52:8568–8575. doi:10.1007/s10853-017-1072-z

    Article  Google Scholar 

  16. Zeng XP, Wang Q, Wang H, Yang YJ (2017) Catalytically active silver nanoparticles loaded in the lumen of halloysite nanotubes via electrostatic interactions. J Mater Sci 52:8391–8400. doi:10.1007/s10853-017-1073-y

    Article  Google Scholar 

  17. Sun B, Sun SQ, Li T, Zhang WQ (2007) Preparation and antibacterial activities of Ag-doped SiO2–TiO2 composite films by liquid phase deposition (LPD) method. J Mater Sci 42:10085–10089. doi:10.1007/s10853-007-2109-5

    Article  Google Scholar 

  18. Rodríguez-Tobías H, Morales G, Ledezma A, Romero J, Grande D (2014) Novel antibacterial electrospun mats based on poly(d,l-lactide) nanofibers and zinc oxide nanoparticles. J Mater Sci 49:8373–8385. doi:10.1007/s10853-014-8547-y

    Article  Google Scholar 

  19. Cacciotti I (2017) Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. J Mater Sci 52:8812–8831. doi:10.1007/s10853-017-1010-0

    Article  Google Scholar 

  20. Dessou NS, Theodorou GS, Kantiranis N, Papadopoulou L, Zorba T, Patsiaoura D, Kontonasaki E, Koidis P, Paraskevopoulos KM (2017) Influence of strontium for calcium substitution on the glass-ceramic network and biomimetic behavior in the ternary system SiO2–CaO–MgO. J Mater Sci 52:1–15. doi:10.1007/s10853-017-0914-z

    Article  Google Scholar 

  21. Mendonca AF, Amoroso TL, Knabel SJ (1994) Destruction of gram-negative food-borne pathogens by high pH involves disruption of the cytoplasmic membrane. Appl Environ Microbiol 60:4009–4014

    Google Scholar 

  22. Xin RX (2010) Advances in applied research of magnesium oxide and magnesium hydroxide. Fine Spec Chem 18:22–26 (Chinese)

    Google Scholar 

  23. Sawai J, Kojima H, Kano F, Igarashi H, Hshimoto A, Kawada E, Kokugan T, Shimizu M (1998) Short Communication: Ames assay with Salmonella typhimurium TA102 for mutagenicity and antimutagenicity of metallic oxide powders having antibacterial activities. World J Microbiol Biotechnol 14:773–775

    Article  Google Scholar 

  24. Dong CX, Song DL, Cairney J, Maddan OL, He GH, Deng YL (2011) Antibacterial study of Mg(OH)2 nanoplatelets. Mater Res Bull 46:576–582

    Article  Google Scholar 

  25. Chanda DK, Samanta A, Dey A, Das PS, Mukhopadhyay AK (2017) Nanoflower, nanoplatelet and nanocapsule Mg(OH)2 powders for adsorption of CO2 gas. J Mater Sci 52:4920–4922. doi:10.1007/s10853-016-0728-4

    Article  Google Scholar 

  26. Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29:627–633

    Article  Google Scholar 

  27. Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents 27:517–531

    Article  Google Scholar 

  28. Vatsha B, Tetyana P, Shumbula PM, Ngila JC, Sikhwivhilu LM, Moutloali RM (2013) Effects of precipitation temperature on nanoparticle surface area and antibacterial behaviour of Mg(OH)2 and MgO nanoparticles. J Nanobiotechnol 4:365–373

    Article  Google Scholar 

  29. Tan Q, Yin WZ, Zhang LL, Liu L (2010) Synthesis of hydrotalcite using brucite as the source of magnesium. Adv Mater Res 158:241–247

    Article  Google Scholar 

  30. Cao X, Chuan XY (2014) Structural characteristics, dispersion, and modification of fibrous brucite. Int J Min Met Mater 21:82–88

    Article  Google Scholar 

  31. Liu KP, Cheng HW, Zhou JE (2004) Investigation of brucite-fiber-reinforced concrete. Cem Concr Res 34:1981–1986

    Article  Google Scholar 

  32. Wang YL, Yang XM, Peng H, Wang F, Liu X, Yang YG, Hao JW (2016) Layer-by-layer assembly of multifunctional flame retardant based on brucite, 3-aminopropyltriethoxysilane, and alginate and its applications in ethylene-vinyl acetate resin. ACS Appl Mater Int 8:9925–9935

    Article  Google Scholar 

  33. Wang CX, Lv JC, Ren Y, Zhou QQ, Chen JY, Zhi T, Lu ZQ, Gao DW, Ma ZP, Jin LM (2016) Cotton fabric with plasma pretreatment and ZnO/carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property. Carbohyd Polym 138:106–113

    Article  Google Scholar 

  34. Farr JD, Neu MP, Schulze RK, Honeyman BD (2007) Plutonium uptake by brucite and hydroxylated periclase. J Alloy Compd 444:533–539

    Article  Google Scholar 

  35. Yamamoto O, Sawai J, Kojima H, Sasamoto T (2002) Effect of mixing ratio on bactericidal action of MgO–CaO powders. J Mater Sci Mater Med 13:789–792

    Article  Google Scholar 

  36. Raza ZA, Anwar F (2016) Impregnation of zinc oxide mediated chitosan nano-composites on PET fabric for performance characteristics. Fiber Polym 17:1378–1383

    Article  Google Scholar 

  37. Mármol G Jr, Savastano H, Tashima MM, Provis JL (2016) Optimization of the MgO–SiO2 binding system for fiber-cement production with cellulosic reinforcing elements. Mater Des 105:251–261

    Article  Google Scholar 

  38. Schmeizer HG (1988) Polyurethanes for “two-dimensional” applications. Mater Des 9:276–286

    Article  Google Scholar 

  39. Yue Z, Vakili A, Duran MP (2017) Surface treatments of solvated mesophase pitch-based carbon fibers. J Mater Sci 52:10250–10260. doi:10.1007/s10853-017-1197-0

    Article  Google Scholar 

  40. Holder KM, Smith RJ, Grunlan JC (2017) A review of flame retardant nanocoatings prepared using layer-by-layer assembly of polyelectrolytes. J Mater Sci 52:12923–12959. doi:10.1007/s10853-017-1390-1

    Article  Google Scholar 

  41. GB/T 20944.3-2008 (2008) Textiles-evaluation for antibacterial activity—part 3: shake flask method [S]. China: Technical Committee of Textile Standards

  42. Pan XH, Wang YH, Chen Z, Pan DM, Cheng YJ, Liu ZJ, Lin Z, Guan X (2013) Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Appl Mater Int 5:1137–1142

    Article  Google Scholar 

  43. Feng XY, Zheng K, Wang CP, Chu FX, Chen Y (2016) Durable antimicrobial cotton fabrics with chitosan based quaternary ammonium salt. Fiber Polym 17:371–379

    Article  Google Scholar 

  44. Zhang DS, Chen L, Zang CF, Chen YY, Lin H (2013) Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohyd Polym 92:2088–2094

    Article  Google Scholar 

  45. Kruiyavar SI, Vetrivel R, Hegde SG, Ramaswamy AV, Chakrabarty D, Mahapatra S (2000) Insights into the formation of hydroxyl ions in calcium carbonate: temperature dependent FTIR and molecular modelling studies. J Mater Chem 10:1835–1840

    Article  Google Scholar 

  46. Rodriguez-Saona LE, Allendorf ME (2011) Use of FTIR for rapid authentication and detection of adulteration of food. Annu Rev Food Sci Technol 2:467–483

    Article  Google Scholar 

  47. Zhao FL, Xi P, Xia HY, Wang CH, Gao L, Cheng BW (2015) Luminescent polymethacrylate composite nanofibers containing a benzoic acid rare earth complex: morphology and luminescence properties. J Alloy Compd 641:132–138

    Article  Google Scholar 

  48. Sanada K, Tada Y, Shindo Y (2009) Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compos Part A Appl Sci Manuf 40:724–730

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in University (NCET-07-0126) and the Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University (20110216007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, J., Sha, L. et al. Design of broad-spectrum antimicrobial polyethylene terephthalate fabrics by coating composited natural brucites. J Mater Sci 53, 1610–1622 (2018). https://doi.org/10.1007/s10853-017-1648-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1648-7

Keywords

Navigation