Skip to main content

Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation

Abstract

The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi0.5Co0.2Mn0.3O2 cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the morphology of the Ni0.5Co0.2Mn0.3(OH)2 precursor but has a typical α-NaFeO2-type (space group: R-3 m) layered structure with an imperfect crystallinity, and the Li is homogenously distributed in the particles. It is further confirmed that the obtained LiNi0.5Co0.2Mn0.3O2 cathode material has a suppressed cation mixing resulting in an excellent electrochemical performance. It delivers the high initial capacity of 187.3 mAhg−1 at 1 C over the high cutoff voltage range of 3.0–4.6 V and the excellent capacity retention of 81.90% after 100 cycles as well as the rate capability of 152.3 mAhg−1 at 8 C, which are attributed to the low polarization, fast Li+ diffusion and small charge–discharge resistance of the as-prepared material upon cycling.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Xiong X, Wang Z, Guo H, Zhang Q, Li X (2013) Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60 & #xB0;C. J Mater Chem A 1:1284–1288. doi:10.1039/c2ta00678b

    Article  Google Scholar 

  2. Chen Hao, Hun Qiyang, Huang Zimo, He Zhenjiang, Wang Zhixing, Guo Huajun, Li Xinhai (2016) Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceram Int 42:263–269. doi:10.1016/j.ceramint.2015.08.104

    Article  Google Scholar 

  3. Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320–324. doi:10.1038/nmat2418

    Article  Google Scholar 

  4. Jung S-K, Gwon H, Hong J et al (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 4:1–7. doi:10.1002/aenm.201300787

    Article  Google Scholar 

  5. Li Lingjun, Chen Zhaoyong, Song Liubin, Ming Xu, Zhu Huali, Gong Li, Zhang Kaili (2015) Characterization and electrochemical performance of lithium-active titanium dioxide inlaid LiNi0.5Co0.2Mn0.3O2 material prepared by lithium residue-assisted method. J Alloys Compd 638:77–82. doi:10.1016/j.jallcom.2015.03.071

    Article  Google Scholar 

  6. Liu K, Yang G-L, Dong Y, Shi T, Chen L (2015) Enhanced cycling stability and rate performance of LiNi0.5Co0.2Mn0.3O2 by CeO2 coating at high cut-off voltage. J Power Sour 281:370–377. doi:10.1016/j.jpowsour.2014.12.131

    Article  Google Scholar 

  7. Li Tao, Li Xinhai, Wang Zhixing, Guo Huajun (2017) A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: a case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2. J Power Sources 342:495–503. doi:10.1016/j.jpowsour.2016.12.095

    Article  Google Scholar 

  8. Schipper F, Erickson EM, Erk C, Shin J-Y, Chesneau FF, Aurbach D (2016) Review—recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164:A6220–A6228. doi:10.1149/2.0351701jes

    Article  Google Scholar 

  9. Li Y, Su Q, Han Q, Li P, Li L, Xu C, Cao X, Cao G (2017) Synthesis and characterization of Mo-doped LiNi0.5Co0.2Mn0.3O2 cathode materials prepared by a hydrothermal process. Ceram Int 43:3483–3488. doi:10.1016/j.ceramint.2016.10.038

    Article  Google Scholar 

  10. L-j Li Z-X, Wang Q-C Liu, Ye C, Chen Z-Y, Gong L (2012) Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8−xCo0.1Mn0.1CrxO2. Electrochim Acta 77:89–96. doi:10.1016/j.electacta.2012.05.076

    Article  Google Scholar 

  11. Lin B, Wen Z, Gu Z, Huang S (2008) Morphology and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material by a slurry spray drying method. J Power Sour 175:564–569. doi:10.1016/j.jpowsour.2007.09.055

    Article  Google Scholar 

  12. Yue P, Wang Z, Peng W et al (2011) Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries. Powder Technol 214:279–282. doi:10.1016/j.powtec.2011.08.022

    Article  Google Scholar 

  13. Kızıltaş-Yavuz N, Herklotz M, Hashem AM, Abuzeid HM, Schwarz B, Ehrenberg H, Mauger A, Julien CM (2013) Synthesis, structural, magnetic and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by a sol–gel method using table sugar as chelating agent. Electrochim Acta 113:313–321. doi:10.1016/j.electacta.2013.09.065

    Article  Google Scholar 

  14. Peng Z, Wan C, Jiang C (1998) Synthesis by sol–gel process and characterization of LiCoO2 cathode materials. J Power Sour 72:215–220. doi:10.1016/S0378-7753(97)02689-X

    Article  Google Scholar 

  15. Li Y, Han Q, Ming X, Ren M, Li L, Ye W, Zhang X, Xu H et al (2014) Synthesis and characterization of LiNi0.5Co0.2Mn0.3O2 cathode material prepared by a novel hydrothermal process. Ceram Int 40:14933–14938. doi:10.1016/j.ceramint.2014.06.090

    Article  Google Scholar 

  16. Wu F, Tian J, Su Y, Guan Y, Jin Y, Wang Z, He T, Bao L et al (2014) Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. J Power Sour 269:747–754. doi:10.1016/j.jpowsour.2014.07.057

    Article  Google Scholar 

  17. Kong J-Z, Zhou F, Wang C-B, Yang X-Y, Zhai H-F, Li H, Li J-X, Tang Z et al (2013) Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials. J Alloys Compd 554:221–226. doi:10.1016/j.jallcom.2012.11.090

    Article  Google Scholar 

  18. Kalyani P, Kalaiselvi N, Muniyandi N (2002) A new solution combustion route to synthesize LiCoO2 and LiMn2O4. J Power Sour 111:232–238. doi:10.1016/S0378-7753(02)00307-5

    Article  Google Scholar 

  19. Hu G, Zhang M, Liang L, Peng Z, Du K, Cao Y (2016) Mg-Al-B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochim Acta 190:264–275. doi:10.1016/j.electacta.2016.01.039

    Article  Google Scholar 

  20. Huang Z, Wang Z, Jing Q, Guo H, Li X, Yang Z (2016) Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material. Electrochim Acta 192:120–126. doi:10.1016/j.electacta.2016.01.139

    Article  Google Scholar 

  21. Spahr ME (1998) Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials. J Electrochem Soc 145:1113–1121. doi:10.1149/1.1838425

    Article  Google Scholar 

  22. Shi Y, Zhang M, Qian D, Meng YS (2016) Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode material. Electrochim Acta 203:154–161. doi:10.1016/j.electacta.2016.03.185

    Article  Google Scholar 

  23. Gnanaraj JS, Zinigrad E, Levi MD, Aurbach D, Schmidt M (2003) A comparison among LiPF6, LiPF3(CF2CF3)3(LiFAP), and LiN(SO2CF2CF3)2 (LiBETI) solutions: electrochemical and thermal studies. J Power Sour 119–121:799–804. doi:10.1016/s0378-7753(03)00256-8

    Article  Google Scholar 

  24. Jorn R, Kumar R, Abraham DP, Voth GA (2013) Atomistic modeling of the electrode-electrolyte interface in Li-Ion energy storage systems: electrolyte structuring. J Phys Chem Cstry C 117:3747–3761. doi:10.1021/jp3102282

    Article  Google Scholar 

  25. Shim J, Kostecki R, Richardson T, Song X, Striebel KA (2002) Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J Power Sour 112:222–230. doi:10.1016/S0378-7753(02)00363-4

    Article  Google Scholar 

  26. Xu B, Fell CR, Chi M, Meng YS (2011) Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ Sci 4:2223–2233. doi:10.1039/c1ee01131f

    Article  Google Scholar 

  27. Koyama Y, Yabuuchi N, Tanaka I, Adachi H, Ohzuku T (2004) Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Electrochem Soc 151:A1545–A1551. doi:10.1149/1.1784823

    Article  Google Scholar 

  28. Yang Z, Song Z, Chu G, Kang X, Ren T, Yang W, Qiao Q (2012) Surface modification of LiCo1/3Ni1/3Mn1/3O2 with CoAl-MMO for lithium-ion batteries. J Mater Sci 47:4205–4209. doi:10.1007/s10853-012-6275-8

    Article  Google Scholar 

  29. Schipper F, Dixit M, Kovacheva D, Talianker M, Haik O, Grinblat J, Erickson EM, Ghanty C et al (2016) Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J Mater Chem A 4:16073–16084. doi:10.1039/c6ta06740a

    Article  Google Scholar 

  30. Ruan Z, Zhu Y, Teng X (2015) Effect of pre-thermal treatment on the lithium storage performance of LiNi0.8Co0.15Al0.05O2. J Mater Sci 51:1400–1408. doi:10.1007/s10853-015-9459-1

    Article  Google Scholar 

  31. Xia L, Qiu K, Gao Y, He X, Zhou F (2015) High potential performance of Cerium-doped LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery. J Mater Sci 50:2914–2920. doi:10.1007/s10853-015-8856-9

    Article  Google Scholar 

  32. Levi MD (1999) Solid-State electrochemical kinetics of Li-Ion intercalation into Li1−xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146:1279–1289. doi:10.1149/1.1391759

    Article  Google Scholar 

  33. Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M, Uchida I (2001) Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J Electrochem Soc 148:A422–A426. doi:10.1149/1.1359197

    Article  Google Scholar 

  34. Shaju KM, Subba Rao GV, Chowdari BVR (2004) Influence of Li-Ion kinetics in the cathodic performance of layered LiNi1/3Co1/3Mn1/3O2. J Electrochem Soc 151:A1324–A1332. doi:10.1149/1.1775218

    Article  Google Scholar 

  35. Aurbach D (1998) Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J Electrochem Soc 145:3024–3034. doi:10.1149/1.1838758

    Article  Google Scholar 

  36. Li L, Chen Z, Zhang Q, Xu M, Zhou X, Zhu H, Zhang K (2015) A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J Mater Chem A 3:894–904. doi:10.1039/c4ta05902f

    Article  Google Scholar 

  37. Ni J, Zhou H, Chen J, Zhang X (2008) Improved electrochemical performance of layered LiNi0.4Co0.2Mn0.4O2 via Li2ZrO3 coating. Electrochim Acta 53:3075–3083. doi:10.1016/j.electacta.2007.11.026

    Article  Google Scholar 

  38. Li L, Chen Z, Song L, Xu M, Zhu H, Gong L, Zhang K (2015) Characterization and electrochemical performance of lithium-active titanium dioxide inlaid LiNi0.5Co0.2Mn0.3O2 material prepared by lithium residue-assisted method. J Alloys and Compd 638:77–82. doi:10.1016/j.jallcom.2015.03.071

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the financial support from the Government of Guangxi Zhuang Autonomous Region (Glorious Laurel Scholar Program No. 2011A025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjiao Li.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, P., Li, Y. et al. Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation. J Mater Sci 53, 2115–2126 (2018). https://doi.org/10.1007/s10853-017-1645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1645-x

Keywords