Abstract
The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi0.5Co0.2Mn0.3O2 cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the morphology of the Ni0.5Co0.2Mn0.3(OH)2 precursor but has a typical α-NaFeO2-type (space group: R-3 m) layered structure with an imperfect crystallinity, and the Li is homogenously distributed in the particles. It is further confirmed that the obtained LiNi0.5Co0.2Mn0.3O2 cathode material has a suppressed cation mixing resulting in an excellent electrochemical performance. It delivers the high initial capacity of 187.3 mAhg−1 at 1 C over the high cutoff voltage range of 3.0–4.6 V and the excellent capacity retention of 81.90% after 100 cycles as well as the rate capability of 152.3 mAhg−1 at 8 C, which are attributed to the low polarization, fast Li+ diffusion and small charge–discharge resistance of the as-prepared material upon cycling.
This is a preview of subscription content, access via your institution.








References
Xiong X, Wang Z, Guo H, Zhang Q, Li X (2013) Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60 & #xB0;C. J Mater Chem A 1:1284–1288. doi:10.1039/c2ta00678b
Chen Hao, Hun Qiyang, Huang Zimo, He Zhenjiang, Wang Zhixing, Guo Huajun, Li Xinhai (2016) Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceram Int 42:263–269. doi:10.1016/j.ceramint.2015.08.104
Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320–324. doi:10.1038/nmat2418
Jung S-K, Gwon H, Hong J et al (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 4:1–7. doi:10.1002/aenm.201300787
Li Lingjun, Chen Zhaoyong, Song Liubin, Ming Xu, Zhu Huali, Gong Li, Zhang Kaili (2015) Characterization and electrochemical performance of lithium-active titanium dioxide inlaid LiNi0.5Co0.2Mn0.3O2 material prepared by lithium residue-assisted method. J Alloys Compd 638:77–82. doi:10.1016/j.jallcom.2015.03.071
Liu K, Yang G-L, Dong Y, Shi T, Chen L (2015) Enhanced cycling stability and rate performance of LiNi0.5Co0.2Mn0.3O2 by CeO2 coating at high cut-off voltage. J Power Sour 281:370–377. doi:10.1016/j.jpowsour.2014.12.131
Li Tao, Li Xinhai, Wang Zhixing, Guo Huajun (2017) A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: a case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2. J Power Sources 342:495–503. doi:10.1016/j.jpowsour.2016.12.095
Schipper F, Erickson EM, Erk C, Shin J-Y, Chesneau FF, Aurbach D (2016) Review—recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164:A6220–A6228. doi:10.1149/2.0351701jes
Li Y, Su Q, Han Q, Li P, Li L, Xu C, Cao X, Cao G (2017) Synthesis and characterization of Mo-doped LiNi0.5Co0.2Mn0.3O2 cathode materials prepared by a hydrothermal process. Ceram Int 43:3483–3488. doi:10.1016/j.ceramint.2016.10.038
L-j Li Z-X, Wang Q-C Liu, Ye C, Chen Z-Y, Gong L (2012) Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8−xCo0.1Mn0.1CrxO2. Electrochim Acta 77:89–96. doi:10.1016/j.electacta.2012.05.076
Lin B, Wen Z, Gu Z, Huang S (2008) Morphology and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material by a slurry spray drying method. J Power Sour 175:564–569. doi:10.1016/j.jpowsour.2007.09.055
Yue P, Wang Z, Peng W et al (2011) Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries. Powder Technol 214:279–282. doi:10.1016/j.powtec.2011.08.022
Kızıltaş-Yavuz N, Herklotz M, Hashem AM, Abuzeid HM, Schwarz B, Ehrenberg H, Mauger A, Julien CM (2013) Synthesis, structural, magnetic and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by a sol–gel method using table sugar as chelating agent. Electrochim Acta 113:313–321. doi:10.1016/j.electacta.2013.09.065
Peng Z, Wan C, Jiang C (1998) Synthesis by sol–gel process and characterization of LiCoO2 cathode materials. J Power Sour 72:215–220. doi:10.1016/S0378-7753(97)02689-X
Li Y, Han Q, Ming X, Ren M, Li L, Ye W, Zhang X, Xu H et al (2014) Synthesis and characterization of LiNi0.5Co0.2Mn0.3O2 cathode material prepared by a novel hydrothermal process. Ceram Int 40:14933–14938. doi:10.1016/j.ceramint.2014.06.090
Wu F, Tian J, Su Y, Guan Y, Jin Y, Wang Z, He T, Bao L et al (2014) Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. J Power Sour 269:747–754. doi:10.1016/j.jpowsour.2014.07.057
Kong J-Z, Zhou F, Wang C-B, Yang X-Y, Zhai H-F, Li H, Li J-X, Tang Z et al (2013) Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials. J Alloys Compd 554:221–226. doi:10.1016/j.jallcom.2012.11.090
Kalyani P, Kalaiselvi N, Muniyandi N (2002) A new solution combustion route to synthesize LiCoO2 and LiMn2O4. J Power Sour 111:232–238. doi:10.1016/S0378-7753(02)00307-5
Hu G, Zhang M, Liang L, Peng Z, Du K, Cao Y (2016) Mg-Al-B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochim Acta 190:264–275. doi:10.1016/j.electacta.2016.01.039
Huang Z, Wang Z, Jing Q, Guo H, Li X, Yang Z (2016) Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material. Electrochim Acta 192:120–126. doi:10.1016/j.electacta.2016.01.139
Spahr ME (1998) Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials. J Electrochem Soc 145:1113–1121. doi:10.1149/1.1838425
Shi Y, Zhang M, Qian D, Meng YS (2016) Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode material. Electrochim Acta 203:154–161. doi:10.1016/j.electacta.2016.03.185
Gnanaraj JS, Zinigrad E, Levi MD, Aurbach D, Schmidt M (2003) A comparison among LiPF6, LiPF3(CF2CF3)3(LiFAP), and LiN(SO2CF2CF3)2 (LiBETI) solutions: electrochemical and thermal studies. J Power Sour 119–121:799–804. doi:10.1016/s0378-7753(03)00256-8
Jorn R, Kumar R, Abraham DP, Voth GA (2013) Atomistic modeling of the electrode-electrolyte interface in Li-Ion energy storage systems: electrolyte structuring. J Phys Chem Cstry C 117:3747–3761. doi:10.1021/jp3102282
Shim J, Kostecki R, Richardson T, Song X, Striebel KA (2002) Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J Power Sour 112:222–230. doi:10.1016/S0378-7753(02)00363-4
Xu B, Fell CR, Chi M, Meng YS (2011) Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ Sci 4:2223–2233. doi:10.1039/c1ee01131f
Koyama Y, Yabuuchi N, Tanaka I, Adachi H, Ohzuku T (2004) Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Electrochem Soc 151:A1545–A1551. doi:10.1149/1.1784823
Yang Z, Song Z, Chu G, Kang X, Ren T, Yang W, Qiao Q (2012) Surface modification of LiCo1/3Ni1/3Mn1/3O2 with CoAl-MMO for lithium-ion batteries. J Mater Sci 47:4205–4209. doi:10.1007/s10853-012-6275-8
Schipper F, Dixit M, Kovacheva D, Talianker M, Haik O, Grinblat J, Erickson EM, Ghanty C et al (2016) Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J Mater Chem A 4:16073–16084. doi:10.1039/c6ta06740a
Ruan Z, Zhu Y, Teng X (2015) Effect of pre-thermal treatment on the lithium storage performance of LiNi0.8Co0.15Al0.05O2. J Mater Sci 51:1400–1408. doi:10.1007/s10853-015-9459-1
Xia L, Qiu K, Gao Y, He X, Zhou F (2015) High potential performance of Cerium-doped LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery. J Mater Sci 50:2914–2920. doi:10.1007/s10853-015-8856-9
Levi MD (1999) Solid-State electrochemical kinetics of Li-Ion intercalation into Li1−xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146:1279–1289. doi:10.1149/1.1391759
Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M, Uchida I (2001) Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J Electrochem Soc 148:A422–A426. doi:10.1149/1.1359197
Shaju KM, Subba Rao GV, Chowdari BVR (2004) Influence of Li-Ion kinetics in the cathodic performance of layered LiNi1/3Co1/3Mn1/3O2. J Electrochem Soc 151:A1324–A1332. doi:10.1149/1.1775218
Aurbach D (1998) Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J Electrochem Soc 145:3024–3034. doi:10.1149/1.1838758
Li L, Chen Z, Zhang Q, Xu M, Zhou X, Zhu H, Zhang K (2015) A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J Mater Chem A 3:894–904. doi:10.1039/c4ta05902f
Ni J, Zhou H, Chen J, Zhang X (2008) Improved electrochemical performance of layered LiNi0.4Co0.2Mn0.4O2 via Li2ZrO3 coating. Electrochim Acta 53:3075–3083. doi:10.1016/j.electacta.2007.11.026
Li L, Chen Z, Song L, Xu M, Zhu H, Gong L, Zhang K (2015) Characterization and electrochemical performance of lithium-active titanium dioxide inlaid LiNi0.5Co0.2Mn0.3O2 material prepared by lithium residue-assisted method. J Alloys and Compd 638:77–82. doi:10.1016/j.jallcom.2015.03.071
Acknowledgements
The authors are very grateful for the financial support from the Government of Guangxi Zhuang Autonomous Region (Glorious Laurel Scholar Program No. 2011A025).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, Y., Li, P., Li, Y. et al. Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation. J Mater Sci 53, 2115–2126 (2018). https://doi.org/10.1007/s10853-017-1645-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-017-1645-x