Abstract
The CALPHAD (calculation of phase diagrams) approach is applied to predict the oxygen vacancy concentration at different temperatures and yttria concentrations of cubic yttria-stabilized zirconia (c-YSZ) single crystals. The quantitative mobility diagrams of oxygen ions are developed in a wide range of temperature and yttria concentration, using the experimental data from the literature. Therefore, the ionic conductivity of c-YSZ single crystals is predicted, using the mobility and oxygen vacancy concentration. Particularly, the conductivity of low-yttria c-YSZ is predicted by applying the CALPHAD approach for the first time. The conductivity prediction of low-yttria c-YSZ can be crucial, since new applications may be designed based on this new information. The activation energy and pre-exponential factor diagrams versus yttria concentration are also plotted.
This is a preview of subscription content, access via your institution.






References
Etsell T, Flengas SN (1970) Electrical properties of solid oxide electrolytes. Chem Rev 70(3):339–376
Nakamura A, Wagner JB (1986) Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. J Electrochem Soc 133(8):1542–1548
Ramamoorthy R, Dutta P, Akbar S (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38(21):4271–4282. doi:10.1023/A:1026370729205
Subbarao E, Maiti H (1984) Solid electrolytes with oxygen ion conduction. Solid State Ion 11(4):317–338
Wagner C (1943) Über den Mechanismus der elektrischen Stromleitung im Nernststift. Naturwissenschaften 31(23):265–268
Suzuki Y, Kohzaki T (1993) Electrical conduction behavior and phase transition of Y2O3-stabilized ZrO2. Solid State Ion 59(3):307–312
Suzuki Y (1997) Phase transition temperature of ZrO2–Y2O3 solid solutions (2.4–6 mol% Y2O3). Solid State Ion 95(3):227–230
Suzuki Y (1995) Phase transition temperature of fluorite-type ZrO2–Y2O3 solid solutions containing 8–44 mol% Y2O3. Solid State Ion 81(3):211–216
Pimenov A et al (1998) Ionic conductivity and relaxations in ZrO2–Y2O3 solid solutions. Solid State Ion 109(1):111–118
Kwon OH, Choi GM (2006) Electrical conductivity of thick film YSZ. Solid State Ion 177(35):3057–3062
Luo J, Almond DP, Stevens R (2000) Ionic mobilities and association energies from an analysis of electrical impedance of ZrO2–Y2O3 alloys. J Am Ceram Soc 83(7):1703–1708
Park JH, Blumenthal RN (1989) Electronic transport in 8 mol% Y2O3–ZrO2. J Electrochem Soc 136(10):2867–2876
Ikeda S et al (1985) Electrical conductivity of yttria-stabilized zirconia single crystals. J Mater Sci 20(12):4593–4600. doi:10.1007/BF00559349
Asadikiya M et al (2017) Integrated investigation of the Li4Ti5O12 phase stability. Ionics. doi:10.1007/s11581-017-2248-x
Lee E, Prinz FB, Cai W (2011) Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution. Phys Rev B 83(5):052301
Lee E, Prinz FB, Cai W (2012) Ab initio kinetic Monte Carlo model of ionic conduction in bulk yttria-stabilized zirconia. Model Simul Mater Sci Eng 20(6):065006
Meyer M, Nicoloso N, Jaenisch V (1997) Percolation model for the anomalous conductivity of fluorite-related oxides. Phys Rev B 56(10):5961
Pornprasertsuk R et al (2005) Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J Appl Phys 98(10):103513
Devanathan R et al (2006) Computer simulation of defects and oxygen transport in yttria-stabilized zirconia. Solid State Ion 177(15):1251–1258
Huang C, Wei W, Chen C (2010) Simulation of atomic-scale defects in the clustering and oxygen jumping process of 8 mol% yttria-stabilised zirconia. J Ceram Process Res 11(6):641–647
Huang HC et al (2014) Molecular dynamics simulation of oxygen ion diffusion in yttria stabilized zirconia single crystals and bicrystals. Fuel Cells 14(4):574–580
Darvish S et al (2015) Quantitative defect chemistry analysis and electronic conductivity prediction of La0.8Sr0.2MnO3±δ Perovskite. J Electrochem Soc 162(9):E134–E140
Darvish S, Saxena SK, Zhong Y (2015) Quantitative analysis of (La0.8Sr0.2)0.98 MnO3±δ electronic conductivity using CALPHAD approach. In: Developments in strategic ceramic materials: a collection of papers presented at the 39th international conference on advanced ceramics and composites. Wiley Online Library
Barsoum M (2002) Fundamentals of ceramics. CRC Press, Boston
Casselton R (1970) Low field DC conduction in yttria-stabilized zirconia. Physica Status Solidi (a). 2(3):571–585
Zhang C et al (2007) Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Mater Sci Eng B 137(1):24–30
Kilner JA, Steele BCH (1981) Nonstoichiometric oxides. Academic Press, New York
Jansson B (1984) Trita-Mac-0234. Royal Institute of Technology, Stockholm
Bale CW et al (2009) FactSage thermochemical software and databases —recent developments. Calphad 33(2):295–311
Asadikiya M et al (2017) Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C. J Alloy Compd 699:1022–1029
Asadikiya M et al (2016) The role of CALPHAD approach in the sintering of B4C with SiC as a sintering aid by spark plasma sintering technique. Addit Manuf Strateg Technol Adv Ceram Ceram Trans 258:185–191
Asadikiya M et al (2016) Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv 6(21):17438–17445
Darvish S et al (2016) Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.2)0.98MnO3±δ system. Int J Hydrog Energy 41(24):10239–10248
Asadikiya M et al (2017) The effect of sintering parameters on spark plasma sintering of B4C. Ceram Int 43(14):11182–11188
Sabarou H et al (2017) Thermodynamic assessment of the chemical stability of (La0.8Sr0.2)0.98Crx Fe1−xO3±δ under oxygen transport membrane fabrication and operation conditions. Solid State Ion 310:1–9
Chen M, Hallstedt B, Gauckler LJ (2004) Thermodynamic modeling of the ZrO2–YO1.5 system. Solid State Ion 170(3):255–274
Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148(3):E121–E126
Liou S, Worrell W (1989) Electrical properties of novel mixed-conducting oxides. Appl Phys A Mater Sci Process 49(1):25–31
Ramamoorthy R, Sundararaman D, Ramasamy S (1999) Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs. Solid State Ion 123(1):271–278
Badwal SPS, Swain MV (1985) ZrO2–Y2O3: electrical conductivity of some fully and partially stabilized single grains. J Mater Sci Lett 4(4):487–489. doi:10.1007/BF00719752
Abelard P, Baumard J (1982) Study of the dc and ac electrical properties of an yttria-stabilized zirconia single crystal [(ZrO2)0.88–(Y2O3)0.12]. Phys Rev B 26(2):1005
Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33(1):91–128
Yashima M, Kakihana M, Yoshimura M (1996) Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ion. 86–88(PART 2):1131–1149
Kawada T et al (1992) Reaction between solid oxide fuel cell materials. Solid State Ion 50(3–4):189–196
Kröger F (1966) Electronic conductivity of calcia-stabilized zirconia. J Am Ceram Soc 49(4):215–218
Tien T, Subbarao E (1963) X-ray and electrical conductivity study of the fluorite phase in the system ZrO2–CaO. J Chem Phys 39(4):1041–1047
Ioffe A, Rutman D, Karpachov S (1978) On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim Acta 23(2):141–142
Schmalzried H (1977) On correlation effects of vacancies in ionic crystals. Z Phys Chem 105(1–2):47–62
Zhu J et al (2015) Probing local electrochemical activity within yttria-stabilized-zirconia via in situ high-temperature atomic force microscopy. J Mater Res 30(03):357–363
Sawaguchi N, Ogawa H (2000) Simulated diffusion of oxide ions in YO1.5–ZrO2 at high temperature. Solid State Ion 128(1):183–189
Krishnamurthy R et al (2004) Oxygen diffusion in yttria-stabilized zirconia: a new simulation model. J Am Ceram Soc 87(10):1821–1830
Acknowledgements
The authors acknowledge the financial support from the American Chemical Society Petroleum Research Fund (PRF#54190-DNI10). The author M. Asadikiya also acknowledges the Doctoral Evidence Acquisition (DEA) Fellowship from Graduate School of Florida International University.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that no conflicts of interest exist for this work.
Rights and permissions
About this article
Cite this article
Asadikiya, M., Zhong, Y. Oxygen ion mobility and conductivity prediction in cubic yttria-stabilized zirconia single crystals. J Mater Sci 53, 1699–1709 (2018). https://doi.org/10.1007/s10853-017-1625-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-017-1625-1