Skip to main content

Oxygen ion mobility and conductivity prediction in cubic yttria-stabilized zirconia single crystals

Abstract

The CALPHAD (calculation of phase diagrams) approach is applied to predict the oxygen vacancy concentration at different temperatures and yttria concentrations of cubic yttria-stabilized zirconia (c-YSZ) single crystals. The quantitative mobility diagrams of oxygen ions are developed in a wide range of temperature and yttria concentration, using the experimental data from the literature. Therefore, the ionic conductivity of c-YSZ single crystals is predicted, using the mobility and oxygen vacancy concentration. Particularly, the conductivity of low-yttria c-YSZ is predicted by applying the CALPHAD approach for the first time. The conductivity prediction of low-yttria c-YSZ can be crucial, since new applications may be designed based on this new information. The activation energy and pre-exponential factor diagrams versus yttria concentration are also plotted.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Etsell T, Flengas SN (1970) Electrical properties of solid oxide electrolytes. Chem Rev 70(3):339–376

    Article  Google Scholar 

  2. Nakamura A, Wagner JB (1986) Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. J Electrochem Soc 133(8):1542–1548

    Article  Google Scholar 

  3. Ramamoorthy R, Dutta P, Akbar S (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38(21):4271–4282. doi:10.1023/A:1026370729205

    Article  Google Scholar 

  4. Subbarao E, Maiti H (1984) Solid electrolytes with oxygen ion conduction. Solid State Ion 11(4):317–338

    Article  Google Scholar 

  5. Wagner C (1943) Über den Mechanismus der elektrischen Stromleitung im Nernststift. Naturwissenschaften 31(23):265–268

    Article  Google Scholar 

  6. Suzuki Y, Kohzaki T (1993) Electrical conduction behavior and phase transition of Y2O3-stabilized ZrO2. Solid State Ion 59(3):307–312

    Article  Google Scholar 

  7. Suzuki Y (1997) Phase transition temperature of ZrO2–Y2O3 solid solutions (2.4–6 mol% Y2O3). Solid State Ion 95(3):227–230

    Article  Google Scholar 

  8. Suzuki Y (1995) Phase transition temperature of fluorite-type ZrO2–Y2O3 solid solutions containing 8–44 mol% Y2O3. Solid State Ion 81(3):211–216

    Article  Google Scholar 

  9. Pimenov A et al (1998) Ionic conductivity and relaxations in ZrO2–Y2O3 solid solutions. Solid State Ion 109(1):111–118

    Article  Google Scholar 

  10. Kwon OH, Choi GM (2006) Electrical conductivity of thick film YSZ. Solid State Ion 177(35):3057–3062

    Article  Google Scholar 

  11. Luo J, Almond DP, Stevens R (2000) Ionic mobilities and association energies from an analysis of electrical impedance of ZrO2–Y2O3 alloys. J Am Ceram Soc 83(7):1703–1708

    Article  Google Scholar 

  12. Park JH, Blumenthal RN (1989) Electronic transport in 8 mol% Y2O3–ZrO2. J Electrochem Soc 136(10):2867–2876

    Article  Google Scholar 

  13. Ikeda S et al (1985) Electrical conductivity of yttria-stabilized zirconia single crystals. J Mater Sci 20(12):4593–4600. doi:10.1007/BF00559349

    Article  Google Scholar 

  14. Asadikiya M et al (2017) Integrated investigation of the Li4Ti5O12 phase stability. Ionics. doi:10.1007/s11581-017-2248-x

    Google Scholar 

  15. Lee E, Prinz FB, Cai W (2011) Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution. Phys Rev B 83(5):052301

    Article  Google Scholar 

  16. Lee E, Prinz FB, Cai W (2012) Ab initio kinetic Monte Carlo model of ionic conduction in bulk yttria-stabilized zirconia. Model Simul Mater Sci Eng 20(6):065006

    Article  Google Scholar 

  17. Meyer M, Nicoloso N, Jaenisch V (1997) Percolation model for the anomalous conductivity of fluorite-related oxides. Phys Rev B 56(10):5961

    Article  Google Scholar 

  18. Pornprasertsuk R et al (2005) Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J Appl Phys 98(10):103513

    Article  Google Scholar 

  19. Devanathan R et al (2006) Computer simulation of defects and oxygen transport in yttria-stabilized zirconia. Solid State Ion 177(15):1251–1258

    Article  Google Scholar 

  20. Huang C, Wei W, Chen C (2010) Simulation of atomic-scale defects in the clustering and oxygen jumping process of 8 mol% yttria-stabilised zirconia. J Ceram Process Res 11(6):641–647

    Google Scholar 

  21. Huang HC et al (2014) Molecular dynamics simulation of oxygen ion diffusion in yttria stabilized zirconia single crystals and bicrystals. Fuel Cells 14(4):574–580

    Article  Google Scholar 

  22. Darvish S et al (2015) Quantitative defect chemistry analysis and electronic conductivity prediction of La0.8Sr0.2MnO3±δ Perovskite. J Electrochem Soc 162(9):E134–E140

    Article  Google Scholar 

  23. Darvish S, Saxena SK, Zhong Y (2015) Quantitative analysis of (La0.8Sr0.2)0.98 MnO3±δ electronic conductivity using CALPHAD approach. In: Developments in strategic ceramic materials: a collection of papers presented at the 39th international conference on advanced ceramics and composites. Wiley Online Library

  24. Barsoum M (2002) Fundamentals of ceramics. CRC Press, Boston

    Google Scholar 

  25. Casselton R (1970) Low field DC conduction in yttria-stabilized zirconia. Physica Status Solidi (a). 2(3):571–585

    Article  Google Scholar 

  26. Zhang C et al (2007) Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Mater Sci Eng B 137(1):24–30

    Article  Google Scholar 

  27. Kilner JA, Steele BCH (1981) Nonstoichiometric oxides. Academic Press, New York

    Google Scholar 

  28. Jansson B (1984) Trita-Mac-0234. Royal Institute of Technology, Stockholm

    Google Scholar 

  29. Bale CW et al (2009) FactSage thermochemical software and databases —recent developments. Calphad 33(2):295–311

    Article  Google Scholar 

  30. Asadikiya M et al (2017) Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C. J Alloy Compd 699:1022–1029

    Article  Google Scholar 

  31. Asadikiya M et al (2016) The role of CALPHAD approach in the sintering of B4C with SiC as a sintering aid by spark plasma sintering technique. Addit Manuf Strateg Technol Adv Ceram Ceram Trans 258:185–191

    Article  Google Scholar 

  32. Asadikiya M et al (2016) Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv 6(21):17438–17445

    Article  Google Scholar 

  33. Darvish S et al (2016) Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.2)0.98MnO3±δ system. Int J Hydrog Energy 41(24):10239–10248

    Article  Google Scholar 

  34. Asadikiya M et al (2017) The effect of sintering parameters on spark plasma sintering of B4C. Ceram Int 43(14):11182–11188

    Article  Google Scholar 

  35. Sabarou H et al (2017) Thermodynamic assessment of the chemical stability of (La0.8Sr0.2)0.98Crx Fe1−xO3±δ under oxygen transport membrane fabrication and operation conditions. Solid State Ion 310:1–9

    Article  Google Scholar 

  36. Chen M, Hallstedt B, Gauckler LJ (2004) Thermodynamic modeling of the ZrO2–YO1.5 system. Solid State Ion 170(3):255–274

    Article  Google Scholar 

  37. Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148(3):E121–E126

    Article  Google Scholar 

  38. Liou S, Worrell W (1989) Electrical properties of novel mixed-conducting oxides. Appl Phys A Mater Sci Process 49(1):25–31

    Article  Google Scholar 

  39. Ramamoorthy R, Sundararaman D, Ramasamy S (1999) Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs. Solid State Ion 123(1):271–278

    Article  Google Scholar 

  40. Badwal SPS, Swain MV (1985) ZrO2–Y2O3: electrical conductivity of some fully and partially stabilized single grains. J Mater Sci Lett 4(4):487–489. doi:10.1007/BF00719752

    Article  Google Scholar 

  41. Abelard P, Baumard J (1982) Study of the dc and ac electrical properties of an yttria-stabilized zirconia single crystal [(ZrO2)0.88–(Y2O3)0.12]. Phys Rev B 26(2):1005

    Article  Google Scholar 

  42. Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33(1):91–128

    Article  Google Scholar 

  43. Yashima M, Kakihana M, Yoshimura M (1996) Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ion. 86–88(PART 2):1131–1149

    Article  Google Scholar 

  44. Kawada T et al (1992) Reaction between solid oxide fuel cell materials. Solid State Ion 50(3–4):189–196

    Article  Google Scholar 

  45. Kröger F (1966) Electronic conductivity of calcia-stabilized zirconia. J Am Ceram Soc 49(4):215–218

    Article  Google Scholar 

  46. Tien T, Subbarao E (1963) X-ray and electrical conductivity study of the fluorite phase in the system ZrO2–CaO. J Chem Phys 39(4):1041–1047

    Article  Google Scholar 

  47. Ioffe A, Rutman D, Karpachov S (1978) On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim Acta 23(2):141–142

    Article  Google Scholar 

  48. Schmalzried H (1977) On correlation effects of vacancies in ionic crystals. Z Phys Chem 105(1–2):47–62

    Article  Google Scholar 

  49. Zhu J et al (2015) Probing local electrochemical activity within yttria-stabilized-zirconia via in situ high-temperature atomic force microscopy. J Mater Res 30(03):357–363

    Article  Google Scholar 

  50. Sawaguchi N, Ogawa H (2000) Simulated diffusion of oxide ions in YO1.5–ZrO2 at high temperature. Solid State Ion 128(1):183–189

    Article  Google Scholar 

  51. Krishnamurthy R et al (2004) Oxygen diffusion in yttria-stabilized zirconia: a new simulation model. J Am Ceram Soc 87(10):1821–1830

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the American Chemical Society Petroleum Research Fund (PRF#54190-DNI10). The author M. Asadikiya also acknowledges the Doctoral Evidence Acquisition (DEA) Fellowship from Graduate School of Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Asadikiya.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest exist for this work.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadikiya, M., Zhong, Y. Oxygen ion mobility and conductivity prediction in cubic yttria-stabilized zirconia single crystals. J Mater Sci 53, 1699–1709 (2018). https://doi.org/10.1007/s10853-017-1625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1625-1

Keywords