Skip to main content

Advertisement

Log in

Synthesis, nonlinear optical properties and cellular imaging of hybrid ZnS nanoparticles capped with conjugated terpyridine derivatives

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel organic/inorganic nanohybrids which consisted of ligand L (L = 2-[(2-hydroxy-ethyl)-(4-[2,2′;6′,2″] terpyridin-4′-yl-phenyl)-amino]-ethanol), an optical terpyridine derivative and ZnS nanoparticles (NPs), had been prepared through a solution-phase synthesis technique. The intermolecular interactions at the interface between ZnS and the ligand components were analyzed by FT-IR, far-IR, UV–Vis absorption spectroscopy, XRD and TEM. Particular properties had been shown by fluorescence spectra, fluorescence lifetime, Raman spectrum, aggregation emission and non-linear optical response. The results indicated that the nano-composite L–ZnS NPs had an obvious aggregation-induced emission in ethanol/n-hexane mixtures, and had larger two-photon absorption (TPA) when compared to the free ligand L. The data for the TPA cross-section value (σ = 16,247.8 GM), nonlinear refractive index (γ = 4.46 × 10−13 cm2 W−1) and the third order nonlinear polarizability [Imχ (3) (esu) = 1.13 × 10−14] were measured and discussed. Meanwhile, due to the laser irradiation induced charge transfer from the ligand to ZnS NPs, the composite could be potentially applied in vitro and in vivo cellular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Wei H, Insin N, Lee J, Han HS, Cordero JM, Liu W, Bawendi MG (2012) Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Lett 12:22–25

    Article  Google Scholar 

  2. Mondini S, Leonzino M, Drago C, Ferretti AM, Usseglio S, Maggioni D, Tornese P, Chini B, Ponti A (2015) Zwitterion-coated iron oxide nanoparticles: surface chemistry and intracellular uptake by Hepatocarcinoma (HepG2) Cells. Langmuir 31:7381–7390

    Article  Google Scholar 

  3. Zhang D, Gan L, Cao Y, Wang Q, Qi L, Guo X (2012) Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor. Adv Mater 24:2715–2720

    Article  Google Scholar 

  4. Rogach AL (2011) Fluorescence energy transfer in hybrid structures of semiconductor nanocrystals. Nano Today 6:355–365

    Article  Google Scholar 

  5. Wang P, Zhang J, He H, Xu X, Jin Y (2015) The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H2 photogeneration from water. Nanoscale 7:5767–5775

    Article  Google Scholar 

  6. Schreiber R, Do J, Roller EM, Zhang T, Schuller VJ, Nichels PC, Feldmann J, Liedl T (2014) Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat Nanotechnol 9:74–79

    Article  Google Scholar 

  7. Kong L, Yang JX, Hao XP, Zhou HP, Wu JY, Hao FY, Li L, Zhang SY, Jin BK, Tao XT, Jiang MH, Tian YP (2010) Tuning the optical properties of fluorophore-hexylcarbazole organic nanoribbons with dispersed inorganic nanocrystals (AgNCs). J Mater Chem 20:7372–7377

    Article  Google Scholar 

  8. Zhai YL, Zhu CZ, Wang E, Dong SJ (2014) Energetic carbon-based hybrids: green and facile synthesis from soy milk and extraordinary electrocatalytic activity towards ORR. Nanoscale 6:2964–2970

    Article  Google Scholar 

  9. Li SH, Lin MM, Toprak MS, Kim DK, Muhammed M (2010) Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev 1:5214

    Article  Google Scholar 

  10. Lebeaua B, Innocenzi P (2011) Hybrid materials for optics and photonics. Chem Soc Rev 40:886–906

    Article  Google Scholar 

  11. Mizoshita N, Taniab T, Inagaki S (2011) Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem Soc Rev 40:789–800

    Article  Google Scholar 

  12. Rocha J, Carlos LD, Paza FAA, Ananiasab D (2011) Luminescent multifunctional lanthanides-based metal–organic frameworks. Chem Soc Rev 40:926–940

    Article  Google Scholar 

  13. Dai C, Yang CX, Yan XP (2015) Ratiometric fluorescent detection of phosphate in aqueous solution based on near infrared fluorescent silver nanoclusters/metal–organic shell composite. Anal Chem 87:11455–11459

    Article  Google Scholar 

  14. Laberty-Robert C, Vallé K, Pereirab F, Sancheza C (2011) Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005

    Article  Google Scholar 

  15. Zhang QF, Cao GZ (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6:91–109

    Article  Google Scholar 

  16. Zhang SJ, Sun J, Zhang XC, Xin JY, Miao QQ, Wang JJ (2014) Ionic liquid-based green processes for energy production. Chem Soc Rev 43:7838–7869

    Article  Google Scholar 

  17. Léonard A, Dandoy P, Danloy E, Leroux G, Meunier CF, Rookeza JC, Su BL (2011) Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chem Soc Rev 40:860–885

    Article  Google Scholar 

  18. Topete A, Melgar D, Alatorre-Meda M, Iglesias P, Argibay B, Vidawati S, Barbosa S, Costoya JA, Taboada P, Mosquera V (2014) NIR-light active hybrid nanoparticles for combined imaging and bimodal therapy of cancerous cells. J Mater Chem B 2:6967–6977

    Article  Google Scholar 

  19. Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1:534–551

    Article  Google Scholar 

  20. Luo S, Kazes M, Lin H, Oron D (2017) Strain-induced type II band alignment control in CdSe nanoplatelet/ZnS-sensitized solar cells. J Phys Chem C 121:11136–11143

    Article  Google Scholar 

  21. Hofman E, Robinson RJ, Li ZJ, Dzikovski B, Zheng WW (2017) Controlled dopant migration in CdS/ZnS core/shell quantum dots. J Am Chem Soc 139:8878–8885

    Article  Google Scholar 

  22. Gray V, Xia P, Huang ZY, Moses E, Fast A, Fishman DA, Vullev VI, Abrahamsson M, Moth-Poulsen K, Tang ML (2017) CdS/ZnS core–shell nanocrystal photosensitizers for visible to UV upconversion. Chem Sci 8:5488–5496

    Article  Google Scholar 

  23. Zamiri R, Abangar HA, Tobaldi DM, Rebelo A, Shabni M, Ferreira JMF (2014) Fabricating and characterising ZnO–ZnS–Ag2S ternary nanostructures with efficient solar-light photocatalytic activity. Phys Chem Chem Phys 16:22418–22425

    Article  Google Scholar 

  24. Kim Y, Kim JY, Jang DJ (2012) One-pot and template-free fabrication of ZnS·(ethylenediamine) 0.5 hybrid nanobelts. J Phys Chem C 116:10296–10302

    Article  Google Scholar 

  25. Han ST, Zhou Y, Zhou L, Yan Y, Huang LB, Wu W, Roy VAL (2015) CdSe/ZnS core–shell quantum dots charge trapping layer for flexible photonic memory. J Mater Chem C 3:173–180

    Google Scholar 

  26. Mansur HS, Mansur AAP, Soriano-Araújo A, Lobato ZIP (2015) Beyond biocompatibility: an approach for the synthesis of ZnS quantum dot-chitosan nano-immunoconjugates for cancer diagnosis. Green Chem 17:1820–1830

    Article  Google Scholar 

  27. Walther A, Muller AF (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113:5194–5261

    Article  Google Scholar 

  28. Idan H, Victoria GP, Zion T, Francisco FS, Ivan MS, Juan B, Arie Z (2011) Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process. J Phys Chem Lett 2:3032–3035

    Article  Google Scholar 

  29. Norris DJ, Bawendi MG (1996) Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys Rev B Condens Matter 53:16338–16346

    Article  Google Scholar 

  30. Pandey A, Guyot PS (2008) Slow electron cooling in colloidal quantum dots. Science 322:929–932

    Article  Google Scholar 

  31. Singhal P, Ghorpade PV, Shankarling GS, Singhal N, Jha SK, Tripathi RM, Ghosh HN (2016) Exciton delocalization and hot hole extraction in CdSe QDs and CdSe/ZnS type 1 core shell QDs sensitized with newly synthesized thiols. Nanoscale 8:1823–1833

    Article  Google Scholar 

  32. Popczun EJ, Read CG, Roske CW, Lewis PNS, Schaak PRE (2014) Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Agewandte Chemie 126:5531–5534

    Article  Google Scholar 

  33. Hirschumann J, Faber H, Halik M (2012) Concept of a thin film memory transistor based on ZnO nanoparticles insulated by a ligand shell. Nanoscale 4:444–447

    Article  Google Scholar 

  34. Noglik H, Pietro WJ (1994) Chemical functionalization of cadmium sulfide quantum-confined microclusters. Chem Mater 6:1593–1595

    Article  Google Scholar 

  35. Lu C, Cui Z, Li Z, Yang B, Shen J (2003) High refractive index thin films of ZnS/polythiourethane nanocomposites. J Mater Chem 13:526–530

    Article  Google Scholar 

  36. Ramírez-Rave S, Hernández-Gordillo A, Calderón HA, Galano A, García-Mendoza C, Gómez R (2015) Synthesis of new ZnS–Bipy based hybrid organic–inorganic materials for photocatalytic reduction of 4-nitrophenol. New J Chem 39:2188–2194

    Article  Google Scholar 

  37. Constable EC (2007) 2,2′:6′,2″-Terpyridines: from chemical obscurity to common supramolecular motifs. Chem Soc Rev 36:246–253

    Article  Google Scholar 

  38. Elgrishi N, Chambers MB, Fontecave M (2015) Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO2 reduction by cobalt–terpyridine complexes. Chem Sci 6:2522–2531

    Article  Google Scholar 

  39. Veliks J, Tseng JC, Arias KI, Weisshar F, Linden A, Siegel JS (2014) Linear bilateral extended 2,2′:6′,2′′-terpyridine ligands, their coordination complexes and heterometallic supramolecular networks. Chem Sci 5:4317–4327

    Article  Google Scholar 

  40. Kong L, Yang J, Li S (2013) A self-assembled nanohybrid composed of fluorophore-phenylamine nanorods and ag nanocrystals: energy transfer, wavelength shift of fluorescence and TPEF application for live-cell imaging. Chem Eur J 19:16625–16633

    Article  Google Scholar 

  41. Shi PF, Jiang Q, Zhao XS, Zhang Q, Tian YP (2015) Study of the one-photon and two-photon properties of two water-soluble terpyridines and their zinc complexes. Dalton Trans 44:8041–8048

    Article  Google Scholar 

  42. Zhang Q, Gao YH, Zhang SY, Wu JY, Zhou HP, Yang JX, Tao XT, Tian YP (2012) Photophysical properties of ellipsoidal aggregations of CdS nanocrystals capped with a chromophoric surface agent. Dalton Trans 41:7067–7072

    Article  Google Scholar 

  43. Wageh S, Zhao SL, Xu XR (2003) Growth and optical properties of colloidal ZnS nanoparticles. J. Cryst Growth 255:332–337

    Article  Google Scholar 

  44. Yao WT, Yu SH, Wu QS (2007) From mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: a mild-solution chemistry approach. Adv Funct Mater 17:623–631

    Article  Google Scholar 

  45. Querner C, Reiss P, Bleuse J, Pron A (2004) Chelating ligands for nanocrystals’ surface functionalization. J Am Chem Soc 126:11574–11582

    Article  Google Scholar 

  46. Querner C, Benedetto A, Demadrille R, Rannou P, Reiss P (2006) Carbodithioate-containing oligo-and polythiophenes for nanocrystals’ surface functionalization. Chem Mater 18:4817–4826

    Article  Google Scholar 

  47. Sun W, Zhu YZ, Wang AR, Kong L, Li SL, Wu JY, Tian YP (2015) Formation and nonlinear optical properties of Ag nanocrystals capped with the conjugated ligand carbazolyl styryl terpyridine, New. J Chem 39:6830–6835

    Google Scholar 

  48. Gao B, Lin Y, Wei SJ, Zeng J, Liao Y, Chen LG (2012) Charge transfer and retention in directly coupled Au–CdSe nanohybrids. Nano Res 5:88–98

    Article  Google Scholar 

  49. Kong L, Yang JX, Xue ZM (2013) Regulation of luminescence band and exploration of antibacterial activity of a nanohybrid composed of fluorophore-phenothiazine nanoribbons dispersed with Ag. J Mater Chem C 1:5047–5057

    Article  Google Scholar 

  50. Feng HB, Zhan L Miao (2010) Facile assembly of cadmium sulfide quantum dots on titanate nanobelts for enhanced nonlinear optical properties. ACS Appl Mater Interfaces 2:1129–1135

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Province (1308085MB24), Scientific Research Foundation of Educational Commission of Anhui Province of China (KJ2012A025), and the National Natural Science Foundation of China (51432001, 21501001, 21602003, 51672002, 51472002), Focus on returned overseas scholar of Ministry of Education of China, Anhui University Doctor Startup Fund (J01001962). Anhui Provincial Natural Science Foundation of China (1708085MC68), the Higher Education Revitalization Plan Talent Project (2013).

Author information

Authors and Affiliations

Author notes

  1. Zhiyuan Chen and Anran Wang are the co-first authors.

    Corresponding authors

    Correspondence to Shengli Li or Yupeng Tian.

    Electronic supplementary material

    Below is the link to the electronic supplementary material.

    Supplementary material 1 (DOCX 3116 kb)

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Chen, Z., Wang, A., Sun, W. et al. Synthesis, nonlinear optical properties and cellular imaging of hybrid ZnS nanoparticles capped with conjugated terpyridine derivatives. J Mater Sci 53, 1791–1800 (2018). https://doi.org/10.1007/s10853-017-1621-5

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s10853-017-1621-5

    Keywords