Electric properties of MnZn ferrite/polyaniline composites: the implication of polyaniline morphology

Abstract

(Di)electric properties of MnZn ferrite particles coated by conductive (emeraldine salt) and non-conductive (emeraldine base) forms of PANi were measured and discussed in relation to properties of individual components of such composite. The electric response in a wide frequency (0.1 Hz–10 MHz) and temperature (−150 to 100 °C) range was determined. Recorded relaxation processes were identified as a result of hopping charge carriers, which either only polarize or give rise to DC conductivity. Temperature dependence of conductivity modelled by variable range hopping model indicated different system dimensionality: 3D in PANi bulk and 1D in PANi film, that is result of PANi morphology variation. AC conductivity frequency spectra were well approximated by power law model, and temperature evolution of its exponent was related to the type of charge involved in the charge transport. Altogether, the overlayer of conductive PANi increases by two orders of magnitude the electrical conductivity of ferrite/PANi composite compared to pristine ferrite, whereas non-conductive PANi reduced it by three orders of magnitude. Therefore, the electrical properties of ferrite/PANi composites are determined by electrical properties of PANi, which in turn depend upon mesoscale charge transport in PANi.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1

    Kong LB, Li ZW, Liu L, Huang R, Abshinova M, Yang ZH et al (2013) Recent progress in some composite materials and structures for specific electromagnetic applications. Int Mater Rev 58:203–259

    Article  Google Scholar 

  2. 2

    Li BW, Shen Y, Yue ZX, Nan CW (2006) Enhanced microwave absorption in nickel/hexagonal-ferrite/polymer composites. Appl Phys Lett 89:132504

    Article  Google Scholar 

  3. 3

    Yusoff AN, Abdullah MH, Ahmad SH, Jusoh SF, Mansor AA, Hamid SAA (2002) Electromagnetic and absorption properties of some microwave absorbers. J Appl Phys 92:876–882

    Article  Google Scholar 

  4. 4

    Kazantsev YN, Lopatin AV, Kazantseva NE, Shatrov AD, Mal’tsev VP, Vilcakova J et al (2010) Broadening of operating frequency band of magnetic-type radio absorbers by FSS incorporation. IEEE Trans Antennas Propag 58:1227–1235

    Article  Google Scholar 

  5. 5

    Bespyatykh YI, Kazantseva NE (2008) Electromagnetic properties of hybrid polymer composites. J Commun Technol Electron 53:143–154

    Article  Google Scholar 

  6. 6

    Fukuda Y, Nagata S, Echizenya K (2004) Electrical conductivity of MnZn ferrite single crystals with a small number of Fe2+ ions. J Magn Magn Mater 279:325–330

    Article  Google Scholar 

  7. 7

    Mott NF (1969) Conduction in non-crystalline materials.3. Localized states in a pseudogap and near extremities of conduction and valence bands. Philos Mag 19:835–852

    Article  Google Scholar 

  8. 8

    Walz F (2002) The Verwey transition—a topical review. J Phys-Condens Mater 14:R285–R340

    Article  Google Scholar 

  9. 9

    Ortega N, Kumar A, Bhattacharya P, Majumder SB, Katiyar RS (2008) Impedance spectroscopy of multiferroic PbZrxTi1-xO3/CoFe2O4 layered thin films. Phys Rev B 77:014111

    Article  Google Scholar 

  10. 10

    Panda RK, Muduli R, Kar SK, Behera D (2014) Dielectric relaxation and conduction mechanism of cobalt ferrite nanoparticles. J Alloy Compd 615:899–905

    Article  Google Scholar 

  11. 11

    Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Article  Google Scholar 

  12. 12

    Gosh M, Barman A, Meikap AK, De SK, Chatterjee S (1999) Hopping transport in HCl doped conducting polyaniline. Phys Lett A 260:138–148

    Article  Google Scholar 

  13. 13

    Wang ZH, Scherr EM, Macdiarmid AG, Epstein AJ (1992) Transport and EPR studies of polyaniline—a quasi-one-dimensional conductor with 3-dimensional metallic states. Phys Rev B 45:4190–4202

    Article  Google Scholar 

  14. 14

    Wang ZH, Ray A, Macdiarmid AG, Epstein AJ (1991) Electron localization and charge transport in poly(o-toluidine)—a model polyaniline derivative. Phys Rev B 43:4373–4384

    Article  Google Scholar 

  15. 15

    Mizoguchi K, Nechtschein M, Travers JP, Menardo C (1989) Spin dynamics in the conducting polymer, polyaniline. Phys Rev Lett 63:66–69

    Article  Google Scholar 

  16. 16

    Nechtschein M, Genoud F, Menardo C, Mizoguchi K, Travers JP, Villeret B (1989) On the nature of the conducting state of polyaniline. Synth Met 29:E211–E218

    Article  Google Scholar 

  17. 17

    Kahol PK, Perera RP, Kumar KKS, Geetha S, Trivedi DC (2003) Electron localization length in polyaniline. Solid State Commun 125:369–372

    Article  Google Scholar 

  18. 18

    Maia DJ, De Paoli MA, Alves OL, Zarbin AJG, das Neves S (2000) Conductive polymer synthesis in solid host matrices. Quim Nova 23:204–215

    Article  Google Scholar 

  19. 19

    Xu P, Han XJ, Wang C, Zhou DH, Lv ZS, Wen AH et al (2008) Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J Phys Chem B 112:10443–10448

    Article  Google Scholar 

  20. 20

    Kazantseva NE, Vilcakova J, Kresalek V, Saha P, Sapurina I, Stejskal J (2004) Magnetic behaviour of composites containing polyaniline-coated manganese-zinc ferrite. J Magn Magn Mater 269:30–37

    Article  Google Scholar 

  21. 21

    Saini P, Choudhary V, Vijayan N, Kotnala RK (2012) Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J Phys Chem C 116:13403–13412

    Article  Google Scholar 

  22. 22

    Makeiff DA, Huber T (2006) Microwave absorption by polyaniline-carbon nanotube composites. Synth Met 156:497–505

    Article  Google Scholar 

  23. 23

    Xiong P, Chen Q, He MY, Sun XQ, Wang X (2012) Cobalt ferrite-polyaniline heteroarchitecture: a magnetically recyclable photocatalyst with highly enhanced performances. J Mater Chem 22:17485–17493

    Article  Google Scholar 

  24. 24

    Babayan V, Kazantseva NE, Sapurina I, Moucka R, Stejskal J, Saha P (2013) Increasing the high-frequency magnetic permeability of MnZn ferrite in polyaniline composites by incorporating silver. J Magn Magn Mater 333:30–38

    Article  Google Scholar 

  25. 25

    Kazantseva NE (2012) Magnetic particle-filled polymer microcomposites. Polymer composites. Wiley, Weinheim, pp 613–672

    Google Scholar 

  26. 26

    Babayan V, Kazantseva NE, Moucka R, Sapurina I, Spivak YM, Moshnikov VA (2012) Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganese-zinc ferrite composites. J Magn Magn Mater 324:161–172

    Article  Google Scholar 

  27. 27

    Babayana V, Kazantseva NE, Sapurina I, Moucka R, Vilcakova J, Stejskal J (2012) Magnetoactive feature of in situ polymerised polyaniline film developed on the surface of manganese–zinc ferrite. Appl Surf Sci 258:7707–7716

    Article  Google Scholar 

  28. 28

    Stejskal J, Sapurina I, Trchova M, Konyushenko EN (2008) Oxidation of aniline: polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41:3530–3536

    Article  Google Scholar 

  29. 29

    Gerhardt R (1994) Impedance and dielectric-spectroscopy revisited - distinguishing localized relaxation from long-range conductivity. J Phys Chem Solids 55:1491–1506

    Article  Google Scholar 

  30. 30

    Sapurina I, Shishov MA (2012) Oxidative polymerization of aniline: molecular synthesis of polyaniline and the formation of supramolecular structures. In: Gomes ADS (ed) New polymers for special applications. InTech, Rijeka

    Google Scholar 

  31. 31

    Shishov MA, Moshnikov VA, Sapurina IY (2013) Self-organization of polyaniline during oxidative polymerization: formation of granular structure. Chem Pap 67:909–918

    Article  Google Scholar 

  32. 32

    Wessling B (2001) From conductive polymers to organic metals. Chem Innov 31:34

    Google Scholar 

  33. 33

    Rozlívková Z, Trchová M, Exnerová M, Stejskal J (2011) The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synth Met 161:1122–1129

    Article  Google Scholar 

  34. 34

    Mazerolles L, Folch S, Colomban P (1999) Study of polyanilines by high-resolution electron microscopy. Macromolecules 32:8504–8508

    Article  Google Scholar 

  35. 35

    O’Neil KD, Shaw B, Semenikhin OA (2007) On the origin of mesoscopic inhomogeneity of conducting polymers. J Phys Chem B 111:9253–9269

    Article  Google Scholar 

  36. 36

    Sapurina I, Tenkovtsev AV, Stejskal J (2015) Conjugated polyaniline as a result of the benzidine rearrangement. Polym Int 64:453–465

    Article  Google Scholar 

  37. 37

    Mahjoub S, Baazaoui M, M’Nassri R, Boudjada NC, Oumezzine M (2015) Electrical conduction and percolation model in Pr0.6Ca0.1Sr0.3Mn1-xFe (x) O-3 (x = 0, 0.05, and 0.075) manganites. J Supercond Novel Magn 28:1905–1911

    Article  Google Scholar 

  38. 38

    Idrees M, Nadeem M, Hassan MM (2010) Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy. J Phys D Appl Phys 43:155401

    Article  Google Scholar 

  39. 39

    Kazantseva NE, Bespyatykh YI, Sapurina I, Stejskal J, Vilcakova J, Saha P (2006) Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating. J Magn Magn Mater 301:155–165

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I [LO1504].

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Moučka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moučka, R., Kazantseva, N. & Sapurina, I. Electric properties of MnZn ferrite/polyaniline composites: the implication of polyaniline morphology. J Mater Sci 53, 1995–2004 (2018). https://doi.org/10.1007/s10853-017-1620-6

Download citation

Keywords

  • Polyaniline (PANi)
  • Emeraldine Base (EB)
  • Emeraldine Salt (ES)
  • Variable Range Hopping (VRH)
  • PANi Film