Skip to main content

Advertisement

Log in

Electric field-assisted pressureless sintering of zirconia–scandia–ceria solid electrolytes

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electric field-assisted (flash) pressureless sintering experiments were carried out in ZrO2 ceramics doped with 10 mol% Sc2O3 and 1 mol% CeO2 (10Sc1CeSZ). All experiments were conducted isothermally at 1050 °C for 2–5 min with the application of a 100–150 V cm−1 AC electric field at 1 kHz with 1–4 A limiting current in green compacts and in samples pre-sintered at different temperatures. Shrinkage level, structural phases and grain morphology data were collected by dilatometry, X-ray diffraction and scanning electron microscopy analyses, respectively. The results showed that for the same delivered electric power, the final shrinkage was higher for higher temperature applications of the electric field and for higher electric current pulses. Moreover, the higher the porosity, the higher the final densification of the flash-sintered 10Sc1CeSZ samples, showing that pores play a role as a preferential path in the flash sintering mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Hagenmuller P, Van Gool W (1978) Solid electrolytes, characterization, materials, applications. Academic Press, Cambridge

    Google Scholar 

  2. Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33:91–128

    Article  Google Scholar 

  3. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76:563–588

    Article  Google Scholar 

  4. Stevens R (1986), Magnesium Elektron Publ. N. 113

  5. Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334:935–939

    Article  Google Scholar 

  6. Singh B, Ghosh S, Aich S, Roy B (2017) Low temperature solid oxide electrolytes (LT-SOE): a review. J Power Sources 339:103–135

    Article  Google Scholar 

  7. Kawada T, Sakai N, Yokokawa H, Doriya M, Anzai I (1992) Relation between solid oxide fuel-cell materials. Solid State Ionics 50:189–196

    Article  Google Scholar 

  8. Mizutani Y, Tamura M, Kawai M, Yamamoto O (1994) Development of high-performance electrolyte in SOFC. Solid State Ionics 72:271–275

    Article  Google Scholar 

  9. Lee D-S, Kim WS, Choi SH, Kim J, Lee H-W, Lee J-H (2005) Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs. Solid State Ionics 176:33–39

    Article  Google Scholar 

  10. Wang ZW, Cheng MJ, Bi ZH, Dong YL, Zhang HM, Zhang J, Feng ZC, Li C (2005) Structure and impedance of ZrO2 doped with Sc2O3 and CeO2. Mater Lett 59:2579–2582

    Article  Google Scholar 

  11. Grosso RL, Muccillo ENS (2013) Sintering, phase composition and ionic conductivity of zirconia-scandia-ceria. J Power Sources 233:6–13

    Article  Google Scholar 

  12. Grosso RL, Bertolete M, Machado IF, Muccillo R, Muccillo ENS (2013) Ionic conductivity and phase stability of spark plasma sintered scandia and ceria-stabilized zirconia. Solid State Ionics 230:48–51

    Article  Google Scholar 

  13. Tan J, Su Y, Tang H, Hu T, Yu Q, Tursun R, Zhang X (2016) Effect of calcined parameters on microstructure and electrical conductivity of 10Sc1CeSZ. J Alloy Compd 686:394–398

    Article  Google Scholar 

  14. Ramesh S, Ng CK, Tan CY, Wong WH, Ching CY, Muchtar A, Somalu MR, Ramesh S, Chandran H, Devaraj P (2016) Effects of sintering on the mechanical and ionic properties of ceria doped scandia stabilized zirconia ceramic. Ceram Int 42:14469–14474

    Article  Google Scholar 

  15. Tan J, Su Y, Hu T, Yu Q, Tursun R, Li Q, Yunze X (2016) Preparation and conductivity of Sc2O3–CeO2–ZrO2. Solid State Ionics 292:22–26

    Article  Google Scholar 

  16. Cologna M, Prette ALG, Raj R (2011) Flash-sintering of cubic yttria-stabilized zirconia at 750 °C for possible use in SOFC manufacturing. J Am Ceram Soc 94:316–319

    Article  Google Scholar 

  17. Muccillo R, de Florio DZ, Fonseca FC, Muccillo ENS (2014) Electric field-assisted co-sintering of planar anode-supported solid oxide fuel cell. MRS fall meeting 2014

  18. Muccillo R, Kleitz M, Muccillo ENS (2011) Flash grain welding in yttria stabilized zirconia. J Eur Ceram Soc 31:1517–1521

    Article  Google Scholar 

  19. Muccillo R, Muccillo ENS (2013) An experimental setup for shrinkage evaluation during electric field-assisted flash sintering: application to yttria-stabilized zirconia. J Eur Ceram Soc 33:515–520

    Article  Google Scholar 

  20. Downs JA, Sglavo VM (2013) Electric field assisted sintering of cubic zirconia at 390 degrees C. J Am Ceram Soc 96:1342–1344

    Article  Google Scholar 

  21. Steil MC, Marinha D, Aman Y, Gomes JRC, Kleitz M (2013) From conventional ac flash sintering of YSZ to hyper-flash and double flash. J Eur Ceram Soc 33:2093–2101

    Article  Google Scholar 

  22. Muccillo R, Muccillo ENS (2014) Shrinkage control of yttria-stabilized zirconia during ac electric field-assisted sintering. J Eur Ceram Soc 34:3871–3877

    Article  Google Scholar 

  23. Muccillo R, Muccillo ENS (2014) Light emission during electric field-assisted sintering of electroceramics. J Eur Ceram Soc 35:1653–1656

    Article  Google Scholar 

  24. da Silva JGP, Lebrun J-M, Al-Qureshi HA, Janssen R, Raj R (2015) Temperature distributions during flash sintering of 8% yttria-stabilized zirconia. J Am Ceram Soc 98:3525–3528

    Article  Google Scholar 

  25. Du YX, Stevenson AJ, Vernat D, Diaz M, Marinha D (2016) Estimating Joule heating and ionic conductivity during flash sintering of 8YSZ. J Eur Ceram Soc 36:749–759

    Article  Google Scholar 

  26. Yu M, Grasso S, McKinnon R, Saunders T, Reece MJ (2016) Review of flash sintering: materials, mechanisms and modelling. Adv Appl Ceram 116:24–60

    Article  Google Scholar 

  27. Muccillo R, Muccillo ENS (2016) Electric field assisted sintering of electroceramics and in situ analysis by impedance spectroscopy. J Electroceramics 38:24–42

    Article  Google Scholar 

  28. Dancer CEJ (2016) Flash sintering of ceramic materials. Mater Res Express 3:1–25

    Article  Google Scholar 

  29. https://fuelcellmaterials.com/products/powders/electrolyte-powders/scandia-ceria-stabilized-zirconia-10-sc-1-ce-powder/

  30. Kleitz M, Kennedy JH (1979) Resolution of multicomponent impedance diagrams. In: Mundy JN, Shenoy GK, Vashishta P (eds) Fast ion transport in solids. Elsevier, North Holland, pp 185–188

    Google Scholar 

  31. Rahaman MN (2008) Sintering of ceramics. CRC Press, Boca Raton, p 56

    Google Scholar 

  32. Macdonald JR (1987) Impedance spectroscopy, emphasizing solid materials and systems. Wiley, London

    Google Scholar 

  33. Déportes C, Duclot M, Fabry P, Fouletier J, Hammou A, Kleitz M, Siebert E, Souquet JL (2008) Électrochimie des Solides. Grenoble Sciences, Grenoble

    Google Scholar 

  34. Chaim R (2016) Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials 9:1–8

    Article  Google Scholar 

  35. Chaim R (2017) Particle surface softening as universal behaviour during flash sintering of oxide nano-powders. Materials 10:1–9

    Article  Google Scholar 

  36. Narayan J (2013) Grain growth model for electric field-assisted processing and flash sintering of materials. Scr Mater 68:785–788

    Article  Google Scholar 

  37. Narayan J (2013) A new mechanism for field-assisted processing and flash sintering of materials. Scr Mater 69:107–111

    Article  Google Scholar 

  38. German RM (1996) Sintering theory and practice. Wiley, London

    Google Scholar 

  39. Boutz MMR, Winnubst AJA, Burgraaff AJ (1994) Yttria-ceria stabilized tetragonal zirconia polycrystals: sintering, grain-growth and grain boundary segregation. J Eur Ceram Soc 13:89–102

    Article  Google Scholar 

  40. Matsui K, Yamakawa T, Uehara M, Enomoto N, Hojo J (2008) Sintering mechanism of fine zirconia powders with alumina added by powder mixing and chemical processes. J Mater Sci 43:2745–2753. doi:10.1007/s10853-008-2493-5

    Article  Google Scholar 

  41. Jha SK, Terauds K, Lebrun J-M, Raj R (2016) Beyond flash sintering in 3 mol% yttria stabilized zirconia. J Ceram Soc Jpn 124:283–288

    Article  Google Scholar 

  42. Dong Y, Chen I-W (2016) Thermal runaway in mold-assisted flash sintering. J Am Ceram Soc 99:2889–2894

    Article  Google Scholar 

  43. Badwal SPS, Drennan J (1992) Microstructure conductivity relationship in the scandia zirconia system. Solid State Ionics 53:769–776

    Article  Google Scholar 

  44. Badwal SPS, Ciacchi FT, Rajendran S, Drennan J (1998) An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3–Y2O3)–ZrO2(Al2O3). Solid State Ionics 109:167–186

    Article  Google Scholar 

  45. Fu Y-P, Wen S-B, Lu C-H (2008) Preparation and characterization of samaria-doped ceria electrolyte materials for solid oxide fuel cells. J Am Ceram Soc 91:127–131

    Article  Google Scholar 

  46. Muccillo R (2009) Impedance spectroscopy analysis of zirconia: 8 mol% yttria solid electrolytes with graphite pore former. J Mater Res 24:1780–1784

    Article  Google Scholar 

Download references

Acknowledgements

To Comissão Nacional de Energia Nuclear—CNEN, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Procs. 470952/2013-0, 303483/2013-0) and Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (Proc. 2013/07296-2) for financial support. One of the authors (SGMC) acknowledges Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the doctorate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginaldo Muccillo.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muccillo, E.N.S., Carvalho, S.G.M. & Muccillo, R. Electric field-assisted pressureless sintering of zirconia–scandia–ceria solid electrolytes. J Mater Sci 53, 1658–1671 (2018). https://doi.org/10.1007/s10853-017-1615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1615-3

Keywords