Skip to main content
Log in

Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multiferroic properties of La-modified four-layered perovskite Bi5−x La x Fe0.5Co0.5Ti3O15 (0 ≤ x ≤ 1) ceramics were investigated, by analyzing the magnetodielectric effect, magneto-polarization response and magnetoelectric conversion. X-ray diffraction indicated the formation of pure Aurivillius ceramics, and Raman spectroscopy revealed the Bi ions displacement and the crystal structure variation. The enhancement of ferromagnetic and ferroelectric properties was observed in Bi5−x La x Fe0.5Co0.5Ti3O15 after La modification. The evidence for enhanced ME coupling was determined by magnetic field-induced marked variations in the dielectric constant and polarization. A maximum ME coefficient of 1.15 mV/cm·Oe was achieved in Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramic, which provides the possible promise for novel magnetoelectric device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Nan CW, Bichurin MI, Dong S, Viehland D (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103:031101

    Article  Google Scholar 

  2. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature (London) 442:759–765

    Article  Google Scholar 

  3. Dong S, Liu JM, Cheong SW, Ren Z (2015) Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv Phys 64:519–626

    Article  Google Scholar 

  4. Hu JM, Chen LQ, Nan CW (2016) Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv Mater 28(1):15–39

    Article  Google Scholar 

  5. Sun NX, Srinivasan G (2012) Voltage control of magnetism in multiferroic heterostructures and devices. Spin 2:1240004

    Article  Google Scholar 

  6. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  Google Scholar 

  7. Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613):1719–1722

    Article  Google Scholar 

  8. Singh K, Caignaert V, Chapon LC, Pralong V, Raveau B, Maignan A (2012) Gigantic magnetic-field-induced polarization and magnetoelectric coupling in a ferrimagnetic oxide CaBaCo4O7. Phys Rev B 86:024410

    Article  Google Scholar 

  9. Dey K, Indra A, De D, Majumdar S, Giri S (2016) Magnetoelectric coupling, ferroelectricity, and magnetic memory effect in double perovskite La3Ni2NbO9. ACS Appl Mater Interfaces 8:12901–12907

    Article  Google Scholar 

  10. Kubel F, Schmid H (1992) X-ray room temperature structure from single crystal data, powder diffraction measurements and optical studies of the aurivillius phase Bi5(Ti3Fe)O15. Ferroelectrics 129:101–112

    Article  Google Scholar 

  11. Mao X, Wang W, Chen X, Lu Y (2009) Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics. Appl Phys Lett 95:082901

    Article  Google Scholar 

  12. Dong XW, Wang KF, Wan JG, Zhu JS, Liu JM (2008) Magnetocapacitance of polycrystalline Bi5Ti3FeO15 prepared by sol–gel method. J Appl Phys 103:094101

    Article  Google Scholar 

  13. Zhao H, Kimura H, Cheng Z, Osada M, Wang J, Wang X, Dou S, Liu Y, Yu J, Matsumoto T, Tohei T, Shibata N, Ikuhara Y (2014) Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film. Sci Res 4:5255

    Google Scholar 

  14. Chen XQ, Xiao J, Xue Y, Zeng XB, Yang FJ, Su P (2014) Room temperature multiferroic properties of Ni-doped Aurivillus phase Bi5Ti3FeO15. Ceram Int 40:2635–2639

    Article  Google Scholar 

  15. Mao X, Sun H, Wang W, Chen X, Lu Y (2013) Ferromagnetic, ferroelectric properties, and magneto-dielectric effect of Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramics. Appl Phys Lett 102:072904

    Article  Google Scholar 

  16. Wu Y, Yao T, Lu Y, Zou B, Mao X, Huang FZ, Sun H, Chen XB (2017) Magnetic, dielectric, and magnetodielectric properties of Bi-layered perovskite Bi4.25Gd0.75Fe0.5Co0.5Ti3O15. J Mater Sci 52:7360–7368. doi:10.1007/s10853-017-0971-3

    Article  Google Scholar 

  17. Zuo XZ, Yang J, Song DP, Yuan B, Tang XW, Zhang KJ, Zhu XB, Song WH, Dai JM, Sun YP (2014) Magnetic, dielectric, and magneto-dielectric properties of rare-earth-substituted Aurivillius phase Bi6Fe1.4Co0.6Ti3O18. J Appl Phys 116:154102

    Article  Google Scholar 

  18. Yang FJ, Su P, Wei C, Chen XQ, Yang CP, Cao WQ (2011) Large magnetic response in (Bi4Nd)Ti3(Fe0.5Co0.5)O15 ceramic at room-temperature. J Appl Phys 110:126102

    Article  Google Scholar 

  19. Chen XQ, Xue Y, Lu ZW, Xiao J, Yao J, Kang ZW, Su P, Yang FJ, Zeng XB, Sun HZ (2015) Magnetodielectric properties of Bi4NdTi3Fe0.7Co0.3O15 multiferroic system. J Alloys Compd 622:288–291

    Article  Google Scholar 

  20. Paul J, Bhardwaj S, Sharma KK, Kotnala RK, Kumar R (2014) Room temperature multiferroic properties and magnetoelectric coupling in Sm and Ni substituted Bi4−x Sm x Ti3−x Ni x O12±δ (x = 0, 0.02, 0.05, 0.07) ceramics. J Appl Phys 115:204909

    Article  Google Scholar 

  21. Osada M, Tada M, Kakihana M, Watanabe T, Funakubo H (2001) Cation distribution and structural instability in Bi4−x La x Ti3O12. Jpn J Appl Phys 40:5572–5575

    Article  Google Scholar 

  22. Kojima S, Shimada S (1996) Soft mode spectroscopy of bismuth titanate single crystals. Phys B Condens Matter 219:617–619

    Article  Google Scholar 

  23. Wang W, Gu SP, Mao XY, Chen XB (2007) Effect of Nd modification on electrical properties of mixed-layer Aurivillius phase Bi4Ti3O12–SrBi4Ti4O15. J Appl Phys 102:024102

    Article  Google Scholar 

  24. Liang K, Qia YJ, Lu CJ (2009) Temperature-dependent Raman scattering in ferroelectric Bi4−x Nd x Ti3O12(x = 0, 0.5, 0.85) single crystals. Raman Spectrosc 40:2088–2091

    Article  Google Scholar 

  25. Graves PR, Hua G, Myhra S, Thompson JG (1995) The Raman modes of the aurivillius phases: temperature and polarization dependence. J Solid State Chem 114:112–122

    Article  Google Scholar 

  26. Kumar S, Varma KBR (2009) Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics. J Phys D Appl Phys 42:075405

    Article  Google Scholar 

  27. Sun S, Wang G, Huang Y, Wang J, Peng R, Lu Y (2014) Structural transformation and multiferroic properties in Gd-doped Bi7Fe3Ti3O21 ceramics. RSC Adv 4:30440–30446

    Article  Google Scholar 

  28. Kim SK, Miyayama M, Yanagida H (1996) Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal. Mater Res Bull 31:121–131

    Article  Google Scholar 

  29. Padhan P, LeClair P, Gupta A, Srinivasan G (2008) Magnetodielectric response in epitaxial thin films of multiferroic Bi2NiMnO6. J Phys Condens Matter 20:355003

    Article  Google Scholar 

  30. Catalan G (2006) Magnetocapacitance without magnetoelectric coupling. Appl Phys Lett 88:102902

    Article  Google Scholar 

  31. Yamasaki Y, Kohara Y, Tokura Y (2009) Quantum magnetoelectric effect in iron garnet. Phys Rev B 80:140412

    Article  Google Scholar 

  32. Park BH, Kang BS, Bu SB, Noh TW, Lee J, Jo W (1999) Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401:682–684

    Article  Google Scholar 

  33. Sun H, Lu XM, Su J, Xu TT, Ju CC, Huang FZ, Zhu JS (2012) Multiferroic behaviour and the magneto-dielectric effect in Bi5FeTi3O15 thin films. J Phys D Appl Phys 45:385001

    Article  Google Scholar 

  34. Liu S, Luo H, Yan SQ, Yao LL, He J, Li YH, He LH, Huang SX, Deng LW (2017) Effect of Nd-doping on structure and microwave electromagnetic properties of BiFeO3. J Magn Magn Mater 426:267–272

    Article  Google Scholar 

  35. Scott JF, Araujo CAP (1989) Ferroelectric memories. Science 246:1400

    Article  Google Scholar 

  36. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y (2003) Magnetic control of ferroelectric polarization. Nature 426:55–58

    Article  Google Scholar 

  37. Palkar VR, Kundaliya DC, Malik SK, Bhattacharya S (2004) Magnetoelectricity at room temperature in the Bi0.9−x Tb x La0.1FeO3 system. Phys Rev B 69:212102

    Article  Google Scholar 

  38. Kojima T, Sakai T, Watanabe T, Funakubo H, Saito K, Osada M (2002) Large remanent polarization of (Bi, Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition. Appl Phys Lett 80:2746–2748

    Article  Google Scholar 

  39. Singh RS, Bhimasankaram T, Kumar GS, Suryanarayana SV (1994) Dielectric and magnetoelectric properties of Bi5FeTi3O15. Solid State Commun 91:567–569

    Article  Google Scholar 

  40. Paul J, Bhardwaj S, Sharma KK, Kotnala RK, Kumar R (2014) Room-temperature multiferroic properties and magnetoelectric coupling in Bi4−x Sm x Ti3−x Co x O12−δ ceramics. J Mater Sci 49:6056–6066. doi:10.1007/s10853-014-8328-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0204600). The authors thank Dr. Jun Lu from Institute of Physics, CAS and Shichao Zhou from Junyutong corporation, for their kind help on magnetoelectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianwen Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yan, S., Luo, H. et al. Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics. J Mater Sci 53, 1014–1023 (2018). https://doi.org/10.1007/s10853-017-1604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1604-6

Keywords

Navigation