Skip to main content
Log in

Upconversion effective enhancement of NaYF4:Yb3+/Er3+ nanoparticles by Ni2+ doping

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this manuscript, Ni2+ ions-doped NaYF4:Yb3+/Er3+ nanoparticles have been synthesized via a modified hydrothermal method. The upconversion luminescence intensities of the green (G) and red (R) emission of NaYF4:Yb3+/Er3+ co-doped with 20 mol% Ni2+ ions are the strongest which increase 32.84 and 20.99 times than that without doping Ni2+, respectively. In addition, the R/G ratio decreases with the concentration of Ni2+ increasing from 0 to 40 mol%. The underlying reason for luminescence enhanced and the R/G ratio decreased by Ni2+ doping is explored by a series of controlled experiments, and the mechanism based on the crystal field asymmetry, different substitution by Ni2+, the energy transition of Er3+ is studied in detail. The study indicates that the misshapen crystal field plays an important role in enhancement fluorescence emission, and several factors affect the R/G ratio including the crystal field, the substitution site and the energy transition. Our result may play a certain function for study and design of high-performance upconversion materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38(4):976–989

    Article  Google Scholar 

  2. Sun LD, Wang YF, Yan CH (2014) Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. Acc Chem Res 47(4):1001–1009

    Article  Google Scholar 

  3. Chen G, Yang C, Prasad PN (2013) Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up-and down-conversion in lanthanide-doped nanoparticles. Acc Chem Res 46(7):1474–1486

    Article  Google Scholar 

  4. Wang R, Zhang F (2014) NIR luminescent nanomaterials for biomedical imaging. J Mater Chem B 2(17):2422–2443

    Article  Google Scholar 

  5. Chan EM, Han G, Goldberg JD et al (2012) Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. Nano Lett 12(7):3839–3845

    Article  Google Scholar 

  6. Shen J, Chen G, Ohulchanskyy TY et al (2013) Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4:Yb, Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. Small 9(19):3213–3217

    Article  Google Scholar 

  7. Qiu P, Zhou N, Chen H et al (2013) Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification. Nanoscale 5(23):11512–11525

    Article  Google Scholar 

  8. Chen G, Liu H, Liang H et al (2008) Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J Phys Chem C 112(31):12030–12036

    Article  Google Scholar 

  9. Huang Z, Yi M, Gao H et al (2017) Enhancing single red band upconversion luminescence of KMnF3:Yb3+/Er3+ nanocrystals by Mg2+ doping. J Alloy Compd 694:241–245

    Article  Google Scholar 

  10. Wang F, Han Y, Lim CS et al (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284):1061–1065

    Article  Google Scholar 

  11. Niu N, He F, Gai S et al (2012) Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+, Ln3+, Bi3+(Ln3+=Er3+, Tm3+, Ho3+) and its enhanced UC luminescence. J Mater Chem 22(40):21613–21623

    Article  Google Scholar 

  12. Zeng S, Xiao J, Yang Q et al (2012) Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties. J Mater Chem 22(19):9870–9874

    Article  Google Scholar 

  13. Huang Z, Gao H, Mao Y (2016) Understanding the effect of Mn2+ on Yb3+/Er3+ upconversion and obtaining a maximum upconversion fluorescence enhancement in inert-core/active-shell/inert-shell structures. RSC Adv 6(86):83321–83327

    Article  Google Scholar 

  14. Chen M, Ma Y, Li M (2014) Facile one-pot synthesis of hydrophilic NaYF4:Yb, Er@ NaYF4:Yb active-core/active-shell nanoparticles with enhanced upconversion luminescence. Mater Lett 114:80–83

    Article  Google Scholar 

  15. Wang L, Lan M, Liu Z et al (2013) Enhanced deep-ultraviolet upconversion emission of Gd3+ sensitized by Yb3+ and Ho3+ in β-NaLuF4 microcrystals under 980 nm excitation. J Mater Chem C 1(13):2485–2490

    Article  Google Scholar 

  16. Shen J, Chen G, Vu AM et al (2013) Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv Opt Mater 1(9):644–650

    Article  Google Scholar 

  17. Song E, Ding S, Wu M et al (2014) Anomalous NIR luminescence in Mn2+ -doped fluoride perovskite nanocrystals. Adv Opt Mater 2(7):670–678

    Article  Google Scholar 

  18. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933

    Article  Google Scholar 

  19. Dong H, Sun LD, Yan CH (2007) Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev 44(6):53

    Google Scholar 

  20. Gao D, Zhang X, Gao W (2013) Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening. ACS Appl Mater Interfaces 5(19):9732–9739

    Article  Google Scholar 

  21. Zhou B, Lin H, Pun EYB (2010) Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region. Opt Express 18(18):18805–18810

    Article  Google Scholar 

  22. Reddy KL, Rai M, Prabhakar N et al (2016) Controlled synthesis, bioimaging and toxicity assessments in strong red emitting Mn2+ doped NaYF4:Yb3+/Ho3+ nanophosphors. RSC Adv 6(59):53698–53704

    Article  Google Scholar 

  23. Tian G, Gu Z, Zhou L et al (2012) Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24(9):1226–1231

    Article  Google Scholar 

  24. Qun LIU, Yongjin LI, Zhiguo S et al (2015) Effect of Zn2+ dopant on photon avalanche upconversion behavior of BiOCl:Er3+ crystals. J Rare Earths 33(10):1098–1103

    Article  Google Scholar 

  25. Chen X, Liu Z, Sun Q et al (2011) Upconversion emission enhancement in Er3+/Yb3+-codoped BaTiO3 nanocrystals by tridoping with Li+ ions. Opt Commun 284(7):2046–2049

    Article  Google Scholar 

  26. Fu J, Fu X, Wang C et al (2013) Controlled growth and up-conversion improvement of sodium yttrium fluoride crystals. Eur J Inorg Chem 8:1269–1274

    Article  Google Scholar 

  27. Jin D, Piper JA (2011) Time-gated luminescence microscopy allowing direct visual inspection of lanthanide-stained microorganisms in background-free condition. Anal Chem 83(6):2294–2300

    Article  Google Scholar 

  28. Shi F, Wang J, Zhai X et al (2011) Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence. CrystEngComm 13(11):3782–3787

    Article  Google Scholar 

  29. Lu J, Paulsen IT, Jin D (2013) Application of exonuclease III-aided target recycling in flow cytometry: DNA detection sensitivity enhanced by orders of magnitude. Anal Chem 85(17):8240–8245

    Article  Google Scholar 

  30. Zhao J, Lu Z, Yin Y et al (2013) Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size. Nanoscale 5(3):944–952

    Article  Google Scholar 

  31. Luitel HN, Mizuno S, Tani T et al (2016) Broadband-sensitive Ni2+–Er3+ based upconverters for crystalline silicon solar cells. RSC Adv 6(60):55499–55506

    Article  Google Scholar 

  32. Huang Q, Yu H, Ma E et al (2015) Upconversion effective enhancement by producing various coordination surroundings of rare-earth ions. Inorg Chem 54(6):2643–2651

    Article  Google Scholar 

  33. Dong H, Sun LD, Wang YF et al (2015) Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x nanocrystals. J Am Chem Soc 137(20):6569–6576

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from School of Physics and Electronics, Henan University.

Funding

This work is supported by the NSFC-Henan Province Joint Fund (No. U1604144), Program for Science and Technology Innovation Talents in Universities of Henan Province (No. 16HASTIT043), the Science and Technology Development Project of Henan Province (No. 172102410043), the Science Fund of Henan Province (No. 162300410020), and the Science Research Project of Education Department of Henan Province (No. 17A140005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, M., Liu, Y., Gao, H. et al. Upconversion effective enhancement of NaYF4:Yb3+/Er3+ nanoparticles by Ni2+ doping. J Mater Sci 53, 1395–1403 (2018). https://doi.org/10.1007/s10853-017-1601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1601-9

Keywords

Navigation