Skip to main content
Log in

Doping concentration-dependent photoluminescence properties of Mn-doped Zn–In–S quantum dots

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this report, doping concentration-dependent photoluminescence (PL) properties of Mn-doped ternary Zn–In–S quantum dots (QDs) were studied by using steady-state and time-resolved PL spectroscopy. The QDs PL was firstly significantly intensified with the increasing Mn doping concentration and then decreased after the doping concentration increased up to 7.5 at.%. However, their decay lifetimes exhibit a monotone decrease with Mn doping concentration ranged from 0 to 10 at.%. It can be concluded that the PL intensity was mainly determined by two factors: one was the increased efficiency of energy transfer from host excitons to Mn2+ ion accepter, and the other was the decreased efficiency of the emission from a Mn2+ ion, which was caused by the increased component of exposed Mn2+ ions on QDs surface and the accelerated interaction between adjacent dopants. The competition of above two exciton relaxation dynamics processes determined the trend of the PL intensity, while the latter was responsible for the monotonously decreased lifetime of the Mn2+ ion emission with the increasing Mn doping concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Norris DJ, Efros AL, Erwin SC (2008) Doped nanocrystals. Science 319:1776–1779

    Article  Google Scholar 

  2. Norris D, Yao N, Charnock F, Kennedy T (2001) High-quality manganese-doped ZnSe nanocrystals. Nano Lett 1:3–7

    Article  Google Scholar 

  3. Xia B, Lenggoro IW, Okuyama K (2002) Synthesis and photoluminescence of spherical ZnS: Mn2+ particles. Chem Mater 14:4969–4974

    Article  Google Scholar 

  4. Nag A, Sapra S, Nagamani C, Sharma A, Pradhan N, Bhat SV, Sarma DD (2007) A study of Mn2+ doping in CdS nanocrystals. Chem Mater 19:3252–3259

    Article  Google Scholar 

  5. Bussian DA, Crooker SA, Yin M, Brynda M, Efros AL, Klimov VI (2008) Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals. Nat Mater 8:35–40

    Article  Google Scholar 

  6. Nag A, Chakraborty S, Sarma D (2008) To dope Mn2+ in a semiconducting nanocrystal. J Am Chem Soc 130:10605–10611

    Article  Google Scholar 

  7. Pradhan N, Sarma D (2011) Advances in light-emitting doped semiconductor nanocrystals. J Phys Chem Lett 2:2818–2826

    Article  Google Scholar 

  8. Wu P, Yan XP (2013) Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev 42:5489–5521

    Article  Google Scholar 

  9. Bhargava R, Gallagher D, Hong X, Nurmikko A (1994) Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett 72:416

    Article  Google Scholar 

  10. Pradhan N (2016) Red-tuned Mn dd emission in doped semiconductor nanocrystals. ChemPhysChem 17:1087–1094

    Article  Google Scholar 

  11. Pradhan N, Goorskey D, Thessing J, Peng X (2005) An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J Am Chem Soc 127:17586–17587

    Article  Google Scholar 

  12. Yang Y, Chen O, Angerhofer A, Cao YC (2006) Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J Am Chem Soc 128:12428–12429

    Article  Google Scholar 

  13. Pradhan N, Peng X (2007) Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J Am Chem Soc 129:3339–3347

    Article  Google Scholar 

  14. Zheng J, Yuan X, Ikezawa M, Jing P, Liu X, Zheng Z, Kong X, Zhao J, Masumoto Y (2009) Efficient photoluminescence of Mn2+ ions in MnS/ZnS core/shell quantum dots. J Phys Chem C 113:16969–16974

    Article  Google Scholar 

  15. Srivastava BB, Jana S, Karan NS, Paria S, Jana NR, Sarma DD, Pradhan N (2010) Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis. J Phys Chem Lett 1:1454–1458

    Article  Google Scholar 

  16. Zeng R, Zhang T, Dai G, Zou B (2011) Highly emissive, color-tunable, phosphine-free Mn: ZnSe/ZnS core/shell and Mn: ZnSeS shell-alloyed doped nanocrystals. J Phys Chem C 115:3005–3010

    Article  Google Scholar 

  17. Cao S, Zheng J, Zhao J, Wang L, Gao F, Wei G, Zeng R, Tian L, Yang W (2013) Highly efficient and well-resolved Mn2+ ion emission in MnS/ZnS/CdS quantum dots. J Mater Chem C 1:2540–2547

    Article  Google Scholar 

  18. Hazarika A, Layek A, De S, Nag A, Debnath S, Mahadevan P, Chowdhury A, Sarma DD (2013) Ultranarrow and widely tunable Mn2+-induced photoluminescence from single Mn-doped nanocrystals of ZnS–CdS alloys. Phys Rev Lett 110:267401

    Article  Google Scholar 

  19. Hazarika A, Pandey A, Sarma DD (2014) Rainbow emission from an atomic transition in doped quantum dots. J Phys Chem Lett 5:2208–2213

    Article  Google Scholar 

  20. Yuan X, Zheng J, Zeng R, Jing P, Ji W, Zhao J, Yang W, Li H (2014) Thermal stability of Mn2+ ion luminescence in Mn-doped core–shell quantum dots. Nanoscale 6:300–307

    Article  Google Scholar 

  21. Zheng J, Cao S, Wang L, Gao F, Wei G, Yang W (2014) Temperature-dependent photoluminescence properties of Mn: ZnCdS quantum dots. RSC Adv 4:30948–30952

    Article  Google Scholar 

  22. Cao S, Zheng J, Zhao J, Yang Z, Shang M, Li C, Yang W, Fang X (2016) Robust and stable ratiometric temperature sensor based on Zn–In–S quantum dots with intrinsic dual-dopant ion emissions. Adv Funct Mater 26:7224–7233

    Article  Google Scholar 

  23. Yang Y, Chen O, Angerhofer A, Cao YC (2008) On doping CdS/ZnS core/shell nanocrystals with Mn. J Am Chem Soc 130:15649–15661

    Article  Google Scholar 

  24. Yang Y, Chen O, Angerhofer A, Cao YC (2009) Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties. Chem Eur J 15:3186–3197

    Article  Google Scholar 

  25. Silva AS, Lourenco SA, Dantas NO (2016) Mn concentration-dependent tuning of Mn2+ d emission of Zn1−xMnxTe nanocrystals grown in a glass system. Phys Chem Chem Phys 18:6069–6076

    Article  Google Scholar 

  26. Pu C, Ma J, Qin H, Yan M, Fu T, Niu Y, Yang X, Huang Y, Zhao F, Peng X (2016) Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications. ACS Cent Sci 2:32–39

    Article  Google Scholar 

  27. Cao S, Li C, Wang L, Shang M, Wei G, Zheng J, Yang W (2014) Long-lived and well-resolved Mn2+ ion emissions in CuInS–ZnS quantum dots. Sci Rep 4:7510

    Article  Google Scholar 

  28. Sotelo-Gonzalez E, Roces L, Garcia-Granda S, Fernandez-Arguelles MT, Costa-Fernandez JM, Sanz-Medel A (2013) Influence of Mn2+ concentration on Mn2+-doped ZnS quantum dot synthesis: evaluation of the structural and photoluminescent properties. Nanoscale 5:9156–9161

    Article  Google Scholar 

  29. Shen S, Zhang Y, Liu Y, Peng L, Chen X, Wang Q (2012) Manganese-doped Ag2S–ZnS heteronanostructures. Chem Mater 24:2407–2413

    Article  Google Scholar 

  30. Peng WQ, Qu SC, Cong GW, Wang ZG (2005) Concentration effect of Mn2+ on the photoluminescence of ZnS: Mn nanocrystals. J Cryst Growth 279:454–460

    Article  Google Scholar 

  31. Zeng R, Sun Z, Cao S, Shen R, Liu Z, Long J, Zheng J, Shen Y, Lin X (2015) A facile route to aqueous Ag: ZnCdS and Ag: ZnCdSeS quantum dots: pure emission color tunable over entire visible spectrum. J Alloy Compd 32:1–9

    Article  Google Scholar 

  32. Manna G, Jana S, Bose R, Pradhan N (2012) Mn-doped multinary CIZS and AIZS nanocrystals. J Phys Chem Lett 3:2528–2534

    Article  Google Scholar 

  33. Peng L, Li D, Zhang Z, Huang K, Zhang Y, Shi Z, Xie R, Yang W (2015) Large-scale synthesis of single-source, thermally stable, and dual-Emissive Mn-doped Zn–Cu–In–S nanocrystals for bright white light-emitting diodes. Nano Res 8:3316–3331

    Article  Google Scholar 

  34. Lin J, Zhang Q, Wang L, Liu X, Yan W, Wu T, Bu X, Feng P (2014) Atomically precise doping of monomanganese ion into coreless supertetrahedral chalcogenide nanocluster inducing unusual red shift in Mn2+ emission. J Am Chem Soc 136:4769–4779

    Article  Google Scholar 

  35. Cao S, Zhao J, Yang W, Li C, Zheng J (2015) Mn2+-doped Zn–In–S quantum dots with tunable bandgaps and high photoluminescence properties. J Mater Chem C 3:8844–8851

    Article  Google Scholar 

  36. Li J, Liu Y, Hua J, Tian L, Zhao J (2016) Photoluminescence properties of transition metal-doped Zn–In–S/ZnS core/shell quantum dots in solid films. RSC Adv 6:44859–44864

    Article  Google Scholar 

  37. Romeo N, Dallaturca A, Braglia R, Sberveglieri G (1973) Charge storage in ZnIn2S4 single crystals. Appl Phys Lett 22:21–22

    Article  Google Scholar 

  38. Chen Z, Li D, Zhang W, Shao Y, Chen T, Sun M, Fu X (2009) Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation. J Phys Chem C 113:4433–4440

    Article  Google Scholar 

  39. Gou X, Cheng F, Shi Y, Zhang L, Peng S, Chen J, Shen P (2006) Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S, Se)2 nano-/microstructures via facile solution route. J Am Chem Soc 128:7222–7229

    Article  Google Scholar 

  40. Cao S, Ji W, Zhao J, Yang W, Li C, Zheng J (2016) Color-tunable photoluminescence of Cu-doped Zn–In–Se quantum dots and their electroluminescence properties. J Mater Chem C 4:581–588

    Article  Google Scholar 

  41. Peng S, Li L, Wu Y, Jia L, Tian L, Srinivasan M, Ramakrishna S, Yan Q, Mhaisalkar SG (2013) Size- and shape-controlled synthesis of ZnIn2S4 nanocrystals with high photocatalytic performance. CrystEngComm 15:1922–1930

    Article  Google Scholar 

  42. Wang X, Damasco J, Shao W, Ke Y, Swihart MT (2015) Synthesis of Zn–In–S quantum dots with tunable composition and optical properties. ChemPhysChem 17:687–691

    Article  Google Scholar 

  43. Karan NS, Sarkar S, Sarma DD, Kundu P, Ravishankar N, Pradhan N (2011) Thermally controlled cyclic insertion/ejection of dopant ions and reversible zinc blende/wurtzite phase changes in ZnS nanostructures. J Am Chem Soc 133:1666–1669

    Article  Google Scholar 

  44. Yuan X, Ma R, Zhang W, Hua J, Meng X, Zhong X, Zhang J, Zhao J, Li H (2015) Dual emissive manganese and copper co-doped Zn–In–S quantum dots as a single color-converter for high color rendering white-light-emitting diodes. ACS Appl Mater Interfaces 7:8659–8666

    Article  Google Scholar 

  45. Zhong H, Bai Z, Zou B (2012) Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications. J Phys Chem Lett 3:3167–3175

    Article  Google Scholar 

  46. Shen S, Zhao L, Zhou Z, Guo L (2008) Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. J Phys Chem C 112:16148–16155

    Article  Google Scholar 

  47. Ishizumi A, Kanemitsu Y (2006) Luminescence spectra and dynamics of Mn-doped CdS core/shell nanocrystals. Adv Mater 18:1083–1085

    Article  Google Scholar 

  48. Bai Z, Ji W, Han D, Chen L, Chen B, Shen H, Zou B, Zhong H (2016) Hydroxyl-terminated CuInS2 based quantum dots: toward efficient and bright light emitting diodes. Chem Mater 28:1085–1091

    Article  Google Scholar 

  49. Chen B, Zhong H, Zhang W, Tan ZA, Li Y, Yu C, Zhai T, Bando Y, Yang S, Zou B (2012) Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance. Adv Funct Mater 22:2081–2088

    Article  Google Scholar 

  50. Chen B, Zhong H, Wang M, Liu R, Zou B (2013) Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes. Nanoscale 5:3514–3519

    Article  Google Scholar 

  51. Qin H, Niu Y, Meng R, Lin X, Lai R, Fang W, Peng X (2013) Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. J Am Chem Soc 136:179–187

    Article  Google Scholar 

  52. Lin W, Niu Y, Meng R, Huang L, Cao H, Zhang Z, Qin H, Peng X (2016) Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands. Nano Res 9:260–271

    Article  Google Scholar 

  53. Chen O, Shelby DE, Yang Y, Zhuang J, Wang T, Niu C, Omenetto N, Cao YC (2010) Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nanocrystals. Angew Chem Int Ed 122:10330–10333

    Article  Google Scholar 

  54. Zheng J, Ji W, Wang X, Ikezawa M, Jing P, Liu X, Li H, Zhao J, Masumoto Y (2010) Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell. J Phys Chem C 114:15331–15336

    Article  Google Scholar 

  55. Chen HY, Maiti S, Son DH (2011) Doping location-dependent energy transfer dynamics in Mn-doped CdS/ZnS nanocrystals. ACS Nano 6:583–591

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (NSFC, Grant No. 61106066), Zhejiang Provincial Science Foundation (Grant No. LY14F040001) and Ningbo Municipal Natural Science Foundation (Grant No. 2016A610104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinju Zheng or Minghui Shang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Zheng, J., Dai, C. et al. Doping concentration-dependent photoluminescence properties of Mn-doped Zn–In–S quantum dots. J Mater Sci 53, 1286–1296 (2018). https://doi.org/10.1007/s10853-017-1598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1598-0

Keywords

Navigation