Skip to main content

Advertisement

Log in

Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Camphor, C10H16O, as a natural and renewable carbon precursor, can be pyrolyzed to pyrolytic carbon (PyC; pyrocarbon) with significant industrial applications from conducting electrodes to biomedical implant coatings. Here, a simple but controllable chemical vapor deposition setup, operating at low temperatures (650–800 °C) in nitrogen atmosphere at ambient pressure in the absence of catalyst, was used. According to XRD and Raman spectroscopy, nanocrystalline thin PyC films were obtained at this temperature range without a significant change in L c and d 002 values. When the deposition temperature increased from 700 to 800 °C, L a and crystallinity percentage values were increased from 2.40 nm and 73.16% to 4.15 nm to 87.58%, respectively. SEM and AFM analyses showed smooth (Ra ≈ 1 nm) and shiny surface for the thin films with 10–500-nm range thickness. The films were hydrophilic on surface (water contact angle ≈ 72.45°) with surface free energy of ≈ 41 mN/m. Young’s modulus, hardness and friction coefficient of the thin PyC coatings were calculated using nanoindentation technique as ≈ 29.9, 3.5 GPa and 0.09, respectively. Resistivity of the films was 2.21 × 10−5 Ωm, so it can be anticipated to repel the blood cells. Cytocompatibility screening in direct contact mode and in vitro biocompatibility findings supported cyto- and hemocompatible properties for the PyC specimens synthesized from camphor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Dauskardt RH, Ritchie RO (1993) Pyrolytic carbon coatings. In: Hench Larry L, Wilson J (eds) Advanced series in ceramics: an introduction to bioceramics, vol 1. World Scientific Publishing Co. Ptd. Ltd, Singapore, pp 261–280

    Chapter  Google Scholar 

  2. Petronyuk YS, Levin VM, Zygan VN (2004) Microacoustical NDE of pyrocarbon materials for cardiovascular prosthetic application. Ann Trans 9((1A (Suppl.))):113–115

    Google Scholar 

  3. De Aza PN, De Aza AH, De Aza S (2005) Crystalline bioceramic materials. Bol Soc Esp Ceram 44(3):135–145

    Article  Google Scholar 

  4. Bourrat X (2003) Structure of pyrocarbons. Fibers and composites. Taylor & Francis, New York, pp 159–182

    Chapter  Google Scholar 

  5. Volkov GM, Dobrova NB, Zaharova EN (1979) Carbonic material for prosthetic heart valve. Carbon Constr Mater 14:96–99

    Google Scholar 

  6. Ma L, Sines G (2002) High resolution, structural studies of a pyrolytic carbon used in medical applications. Carbon 40(3):451–454

    Article  Google Scholar 

  7. Cook S, Thomas KA, Kester MA (1989) Wear characteristics of the canine acetabulum against different femoral prostheses. J Bone Joint Surg Br 71(2):189–197

    Article  Google Scholar 

  8. Norinaga K, Deutschmann O, Saegusa N, J-i Hayashi (2009) Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry. J Anal Appl Pyrolysis 86(1):148–160

    Article  Google Scholar 

  9. Sharon M, Pradhan D, Ando Y, Zhao X (2002) Electrical and optical properties of semiconducting camphoric carbon films. Curr Appl Phys 2(6):445–450

    Article  Google Scholar 

  10. Chen W, Vermaak I, Viljoen A (2013) Camphor—a fumigant during the black death and a coveted fragrant wood in ancient egypt and babylon—a review. Molecules 18(5):5434–5454

    Article  Google Scholar 

  11. Charwat AF (1968) Exploratory studies on the sublimation of slender camphor and naphthalene models in a supersonic wind-tunnel. DTIC Document

  12. Kumar M, Ando Y (2003) Single-wall and multi-wall carbon nanotubes from camphor—a botanical hydrocarbon. Diam Relat Mater 12(10):1845–1850

    Article  Google Scholar 

  13. Dong G, Hüttinger K (2002) Consideration of reaction mechanisms leading to pyrolytic carbon of different textures. Carbon 40(14):2515–2528

    Article  Google Scholar 

  14. Liu F, Zhang Y (2010) Substrate-free synthesis of large area, continuous multi-layer graphene film. Carbon 48(9):2394–2400

    Article  Google Scholar 

  15. Ahmed M, Kishi N, Sugita R, Fukaya A, Khatri I, Liang J, Mominuzzaman SM, Soga T, Jimbo T (2013) Graphene synthesis by thermal chemical vapor deposition using solid precursor. J Mater Sci: Mater Electron 24:2151–2155

    Google Scholar 

  16. Kumar M (2011) Carbon nanotube synthesis and growth mechanism. In: Yellampalli S (ed) Carbon nanotubes - synthesis, characterization, applications. InTech. doi:10.5772/978

  17. Reznik B, Hüttinger K (2002) On the terminology for pyrolytic carbon. Carbon 40(4):621–624

    Article  Google Scholar 

  18. Mukhopadhyay K, Krishna KM, Sharon M (1994) Fullerenes from camphor: a natural source. Phys Rev Lett 72(20):3182

    Article  Google Scholar 

  19. TermehYousefi A, Bagheri S, Shinji K, Rouhi J, Rusop Mahmood M, Ikeda S (2014) Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material. BioMed Res Int 2014:691537

  20. Kumar M, Ando Y (2005) Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support. Carbon 43(3):533–540

    Article  Google Scholar 

  21. Giorcelli M (2008) Growth and characterization of carbon nanotubes by CVD system. Politecnico di Torino, Turin

    Google Scholar 

  22. Mukhopadhyay K, Sharon M (1997) Glassy carbon from camphor—a natural source. Mater Chem Phys 49(2):105–109

    Article  Google Scholar 

  23. Mukhopadhyay K, Sharon M (1997) Diamond-like carbon film from camphor soot. Mater Manuf Process 12(3):541–554

    Article  Google Scholar 

  24. Sharon M, Mukhopadhyay K, Yase K, Iijima S, Ando Y, Zhao X (1998) Spongy carbon nanobeads—a new material. Carbon 36(5):507–511

    Article  Google Scholar 

  25. Oza G, Ravichandran M, Merupo V-I, Shinde S, Mewada A, Ramirez JT, Velumani S, Sharon M, Sharon M (2016) Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging. Sci Rep 6:21286

    Article  Google Scholar 

  26. Sharon M, Jain S, Kichambare P, Kumar M (1998) Effect of pyrolyzing time and temperature on the bandgap of camphor-pyrolyzed semiconducting carbon films. Mater Chem Phys 56(3):284–288

    Article  Google Scholar 

  27. Mohamad F, Noor UM, Rusop M Electrical properties of amorphous carbon thin films prepared from natural precursor of camphor. In: AIP conference proceedings, 2009. AIP, pp 606–610

  28. Fadzilah AN, Dayana K, Rusop M (2012) Fabrication and characterization of camphor-based amorphous carbon thin films. In: Paper presented at the 5th Bangladesh society of mechanical engineers (BSME) international conference on thermal engineering, ICTE 2012 - Dhaka, Bangladesh

  29. Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430(1):56–59

    Article  Google Scholar 

  30. Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M (2010) Graphene constructed carbon thin films as transparent electrodes for solar cell applications. J Mater Chem 20:9713–9717. doi:10.1039/c0jm01352h

    Article  Google Scholar 

  31. Ravani F, Papagelis K, Dracopoulos V, Parthenios J, Dassios KG, Siokou A, Galiotis C (2013) Graphene production by dissociation of camphor molecules on nickel substrate. Thin Solid Films 527:31–37

    Article  Google Scholar 

  32. Lai L-H, Yang J-S, Shiue S-T (2014) Characteristics of carbon films prepared by thermal chemical vapor deposition using camphor. Thin Solid Films 556:544–551

    Article  Google Scholar 

  33. Bokros J (1965) The structure of pyrolytic carbon deposited in a fluidized bed. Carbon 3(1):17–29

    Article  Google Scholar 

  34. Awitdrus MD, Talib IA, Omar R, Jumali MHH, Taer E, Saman MM (2010) Microcrystallite dimension and total active surface area of carbon electrode from mixtures of pre-carbonized oil palm empty fruit bunches and green petroleum cokes. Sains Malays 39(1):83–86

    Google Scholar 

  35. Manoj B, Kunjomana A (2012) Study of stacking structure of amorphous carbon by X-ray diffraction technique. Int J Electrochem Sci 7:3127–3134

    Google Scholar 

  36. Saikia BK, Boruah RK, Gogoi PK (2009) A X-ray diffraction analysis on graphene layers of Assam coal. J Chem Sci 121(1):103–106

    Article  Google Scholar 

  37. Subrahmanyam K, Vivekchand S, Govindaraj A, Rao C (2008) A study of graphenes prepared by different methods: characterization, properties and solubilization. J Mater Chem 18(13):1517–1523

    Article  Google Scholar 

  38. Behzadi S, Imani M, Yousefi M, Galinetto P, Simchi A, Amiri H, Stroeve P, Mahmoudi M (2012) Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications. Nanotechnology 23(4):045102

    Article  Google Scholar 

  39. Pimenta M, Dresselhaus G, Dresselhaus MS, Cancado L, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1290

    Article  Google Scholar 

  40. Chu PK, Li L (2006) Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys 96(2):253–277

    Article  Google Scholar 

  41. Feng S, Yang Y, Li L, Zhang D, Yang X, Bai S, Xia H, Yan L, Huai P, Zhou X (2015) Effect of Ar+ ion irradiation on the microstructure of pyrolytic carbon. J Appl Phys 117:115101–115107. doi:10.1063/1.4915930

    Article  Google Scholar 

  42. Feng S, Xu L, Li L, Bai S, Yang X, Zhou X (2013) Sealing nuclear graphite with pyrolytic carbon. J Nucl Mater 441:449–454

    Article  Google Scholar 

  43. Huang N, Yang P, Leng Y, Chen J, Sun H, Wang J, Wang G, Ding P, Xi T, Leng Y (2003) Hemocompatibility of titanium oxide films. Biomaterials 24(13):2177–2187

    Article  Google Scholar 

  44. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20

    Article  Google Scholar 

  45. Zhang H (2012) Mechanical and microstructural study of silicon carbide and pyrolytic carbon coatings in TRISO fuel particles. The University of Manchester, Manchester

    Google Scholar 

  46. Kim YK, Kim WK, Cho MS, Cho HJ, Kim JH (2010) Density Measurement of Outer Pyrolytic Carbon layer of Simulated TRISO-Coated Particles with HfO2 Kernels. In: Paper presented at the transactions of the Korean nuclear society autumn meeting, Jeju, Korea, October 21–22, 2010

  47. Ziegler I, Fournet R, Marquaire P-M (2005) Influence of surface on chemical kinetic of pyrocarbon deposition obtained by propane pyrolysis. J Anal Appl Pyrolysis 73(1):107–115

    Article  Google Scholar 

  48. McEvoy N, Peltekis N, Kumar S, Rezvani E, Nolan H, Keeley GP, Blau WJ, Duesberg GS (2012) Synthesis and analysis of thin conducting pyrolytic carbon films. Carbon 50(3):1216–1226

    Article  Google Scholar 

  49. ISO-10993-5 (2009) Biological evaluation of medical devices – Part 5: Tests for in vitro cytotoxicity

  50. ISO-10993-4 (2002) Biological evaluation of medical devices. Part 4. Selection of tests for interaction with blood. AAMI standards and recommended practice, vol 4

  51. Wu X, Yu X, Lin Z, Huang J, Cao L, Zhang B, Zhan Y, Meng H, Zhu Y, Zhang Y (2016) Nitrogen doped graphitic carbon ribbons from cellulose as non noble metal catalyst for oxygen reduction reaction. Int J Hydrog Energy 41:14111–14122

    Article  Google Scholar 

  52. Adelhelm P, De Jongh PE (2011) The impact of carbon materials on the hydrogen storage properties of light metal hydrides. J Mater Chem 21(8):2417–2427

    Article  Google Scholar 

  53. Coutinho AR, Rocha JD, Luengo CA (2000) Preparing and characterizing biocarbon electrodes. Fuel Process Technol 67(2):93–102

    Article  Google Scholar 

  54. Awasthi K, Kumar R, Raghubanshi H, Awasthi S, Pandey R, Singh D, Yadav TP, Srivastava ON (2011) Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials. Bull Mater Sci 34(4):607–614

    Article  Google Scholar 

  55. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  56. López-Honorato E, Meadows P, Xiao P (2009) Fluidized bed chemical vapor deposition of pyrolytic carbon–I. Effect of deposition conditions on microstructure. Carbon 47(2):396–410

    Article  Google Scholar 

  57. Thema F, Moloto M, Dikio E, Nyangiwe N, Kotsedi L, Maaza M, Khenfouch M (2012) Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. Journal of Chemistry 2013

  58. López-Honorato E, Meadows P, Xiao P, Marsh G, Abram T (2008) Structure and mechanical properties of pyrolytic carbon produced by fluidized bed chemical vapor deposition. Nucl Eng Des 238(11):3121–3128

    Article  Google Scholar 

  59. Wang Y-X, Fan W-X, Wang G-L, Ji M-X (2011) New insight into the graphene based films prepared from carbon fibers. Mater Sci Appl 2(07):833

    Google Scholar 

  60. D-s Zhang, K-z Li, L-j Guo, H-j Li, H-l Li (2012) Texture characterization and mechanical properties of pyrocarbon obtained by chemical vapor deposition at 1450–1550° C. Mater Sci Eng, A 539:1–6

    Article  Google Scholar 

  61. Li K, Zhang D, Guo L, Li H (2010) Micro-and nano-structure characterization of isotropic pyrocarbon obtained via chemical vapor deposition in hot wall reactor. J Mater Sci Technol 26(12):1133–1138

    Article  Google Scholar 

  62. López-Honorato E, Meadows P, Shatwell R, Xiao P (2010) Characterization of the anisotropy of pyrolytic carbon by Raman spectroscopy. Carbon 48(3):881–890

    Article  Google Scholar 

  63. Ferrari A, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095

    Article  Google Scholar 

  64. Zhang H, Lo´pez-Honorato E, Xiao P (2015) Fluidized bed chemical vapor deposition of pyrolytic carbon-III. Relationship between microstructure and mechanical properties. Carbon 91:346–357

    Article  Google Scholar 

  65. Umair A, Raza TZ, Raza H (2016) Ultrathin pyrolytic carbon films on a magnetic substrate. Mater Res Express 3(075601):1–5

    Google Scholar 

  66. Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP (1996) Raman spectroscopy on amorphous carbon films. J Appl Phys 80(1):440–447

    Article  Google Scholar 

  67. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  Google Scholar 

  68. Cancado LG, Pimenta MA, Saito R, Jorio A, Ladeira LO, Grueneis A, Souza-Filho AG, Dresselhaus G, Dresselhaus MS (2002) Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys Rev B 66(3):035415

    Article  Google Scholar 

  69. Ray K, McCreery RL (1997) Spatially resolved Raman spectroscopy of carbon electrode surfaces: observations of structural and chemical heterogeneity. Anal Chem 69(22):4680–4687

    Article  Google Scholar 

  70. Zoubir A (2012) Raman imaging: techniques and applications, vol 168. Springer, Berlin

    Book  Google Scholar 

  71. Oma KH, Rusin JM, Kidd RW, Browning MF Alternative waste form development-low-temperature pyrolytic carbon coatings. In: Proc. Symp. Waste Manage.;(United States), 1981. Battelle, Pac Northwest Lab, Richland, Wash, USA

  72. Oma KH, Buckwalter CQ, Chick LA (1981) Coated particle waste form development. Pacific Northwest Lab, Richland

    Book  Google Scholar 

  73. dos Santos V, Brandalise RN, Savaris M (2017) Biomaterials: characteristics and properties. In: Engineering of biomaterials. Springer, pp 5–15. doi:10.1007/978-3-319-58607-6_2

  74. Litzler P-Y, Benard L, Barbier-Frebourg N, Vilain S, Jouenne T, Beucher E, Bunel C, Lemeland J-F, Bessou J-P (2007) Biofilm formation on pyrolytic carbon heart valves: influence of surface free energy, roughness, and bacterial species. J Thorac Cardiovas Surg 134(4):1025–1032

    Article  Google Scholar 

  75. Kaplas T, Kuzhir P (2017) Ultra-thin pyrocarbon films as a versatile coating material. Nanoscale Res Lett. doi:10.1186/s11671-017-1896-0

    Google Scholar 

  76. Roy RK, Lee KR (2007) Biomedical applications of diamond like carbon coatings: a review. J Biomed Mater Res Part B Appl Biomater 83(1):72–84

    Article  Google Scholar 

  77. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng, R 36:143–206

    Article  Google Scholar 

  78. Nezafati M (2014) Silicon carbide nanowires as a biomaterial. In: Biomaterial Testing Methodology for Long-Term in vivo Applications: Silicon Carbide Corrosion Resistance, Biocompatibility and Hemocompatibility. University of South Florida, pp 83–93

  79. Deyneka-Dupriez N, Herr U, Fecht H-J, Pfrang A, Schimmel T, Reznik B, Gerthsen D (2008) Interfacial adhesion and friction of pyrolytic carbon thin films on silicon substrates. Mater Res Soc 23(10):2749–2756. doi:10.1557/JMR.2008.0339

    Article  Google Scholar 

  80. Bhardwaj V, Chowdhury R, Jayaganthan R (2017) Adhesion strength and nanomechanical characterization of ZnO thin films. Mater Res Soc. doi:10.1557/jmr.2017.85

    Google Scholar 

  81. Hofmann G, Wiedenmeier M, Freund M, Beavan A, Hay J, Pharr G (2000) An investigation of the relationship between position within coater and pyrolytic carbon characteristics using nanoindentation. Carbon 38(5):645–653

    Article  Google Scholar 

  82. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2012) Biomaterials science: an introduction to materials in medicine, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  83. Bowden FP, Tabor D (2001) The friction and lubrication of solids. Oxford University Press, New York, pp 112–163

    Google Scholar 

  84. Fedel M (2013) Blood compatibility of diamond- like carbon (DLC) coatings. Diamond-based materials for biomedical applications:71-102

  85. Horbett TA (1993) Principles underlying the role of adsorbed plasma proteins in blood interactions with foreign materials. Cardiovas Pathol 2(3):137–148

    Article  Google Scholar 

  86. Goodman SL (1999) Sheep, pig, and human platelet-material interactions with model cardiovascular biomaterials. J Biomed Mater Res 45(3):240–250

    Article  Google Scholar 

  87. Xu L-C, Siedlecki CA (2007) Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28(22):3273–3283

    Article  Google Scholar 

  88. González B, Benítez H, Rufino K, Fernández M, Echevarría W (December 2003) “Biomechanics of mechanical heart valve” In: Paper presented at the applications of engineering mechanics in medicine, GED at University of Puerto Rico, Mayaguez

Download references

Acknowledgements

The authors are grateful to Iran Polymer and Petrochemical Institute (IPPI) for the financial support under contract Grant Number of 71751103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yousefi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, Z.S., Yousefi, M., Imani, M. et al. Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor. J Mater Sci 53, 959–976 (2018). https://doi.org/10.1007/s10853-017-1590-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1590-8

Keywords

Navigation