Journal of Materials Science

, Volume 53, Issue 2, pp 959–976 | Cite as

Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor

  • Zeinab Sadat Sheikholeslami
  • Mohammad Yousefi
  • Mohammad Imani
  • Morteza Daliri Joupari


Camphor, C10H16O, as a natural and renewable carbon precursor, can be pyrolyzed to pyrolytic carbon (PyC; pyrocarbon) with significant industrial applications from conducting electrodes to biomedical implant coatings. Here, a simple but controllable chemical vapor deposition setup, operating at low temperatures (650–800 °C) in nitrogen atmosphere at ambient pressure in the absence of catalyst, was used. According to XRD and Raman spectroscopy, nanocrystalline thin PyC films were obtained at this temperature range without a significant change in L c and d 002 values. When the deposition temperature increased from 700 to 800 °C, L a and crystallinity percentage values were increased from 2.40 nm and 73.16% to 4.15 nm to 87.58%, respectively. SEM and AFM analyses showed smooth (Ra ≈ 1 nm) and shiny surface for the thin films with 10–500-nm range thickness. The films were hydrophilic on surface (water contact angle ≈ 72.45°) with surface free energy of ≈ 41 mN/m. Young’s modulus, hardness and friction coefficient of the thin PyC coatings were calculated using nanoindentation technique as ≈ 29.9, 3.5 GPa and 0.09, respectively. Resistivity of the films was 2.21 × 10−5 Ωm, so it can be anticipated to repel the blood cells. Cytocompatibility screening in direct contact mode and in vitro biocompatibility findings supported cyto- and hemocompatible properties for the PyC specimens synthesized from camphor.



The authors are grateful to Iran Polymer and Petrochemical Institute (IPPI) for the financial support under contract Grant Number of 71751103.

Supplementary material

10853_2017_1590_MOESM1_ESM.docx (594 kb)
Supplementary material 1 (DOCX 593 kb)


  1. 1.
    Dauskardt RH, Ritchie RO (1993) Pyrolytic carbon coatings. In: Hench Larry L, Wilson J (eds) Advanced series in ceramics: an introduction to bioceramics, vol 1. World Scientific Publishing Co. Ptd. Ltd, Singapore, pp 261–280CrossRefGoogle Scholar
  2. 2.
    Petronyuk YS, Levin VM, Zygan VN (2004) Microacoustical NDE of pyrocarbon materials for cardiovascular prosthetic application. Ann Trans 9((1A (Suppl.))):113–115Google Scholar
  3. 3.
    De Aza PN, De Aza AH, De Aza S (2005) Crystalline bioceramic materials. Bol Soc Esp Ceram 44(3):135–145CrossRefGoogle Scholar
  4. 4.
    Bourrat X (2003) Structure of pyrocarbons. Fibers and composites. Taylor & Francis, New York, pp 159–182CrossRefGoogle Scholar
  5. 5.
    Volkov GM, Dobrova NB, Zaharova EN (1979) Carbonic material for prosthetic heart valve. Carbon Constr Mater 14:96–99Google Scholar
  6. 6.
    Ma L, Sines G (2002) High resolution, structural studies of a pyrolytic carbon used in medical applications. Carbon 40(3):451–454CrossRefGoogle Scholar
  7. 7.
    Cook S, Thomas KA, Kester MA (1989) Wear characteristics of the canine acetabulum against different femoral prostheses. J Bone Joint Surg Br 71(2):189–197CrossRefGoogle Scholar
  8. 8.
    Norinaga K, Deutschmann O, Saegusa N, J-i Hayashi (2009) Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry. J Anal Appl Pyrolysis 86(1):148–160CrossRefGoogle Scholar
  9. 9.
    Sharon M, Pradhan D, Ando Y, Zhao X (2002) Electrical and optical properties of semiconducting camphoric carbon films. Curr Appl Phys 2(6):445–450CrossRefGoogle Scholar
  10. 10.
    Chen W, Vermaak I, Viljoen A (2013) Camphor—a fumigant during the black death and a coveted fragrant wood in ancient egypt and babylon—a review. Molecules 18(5):5434–5454CrossRefGoogle Scholar
  11. 11.
    Charwat AF (1968) Exploratory studies on the sublimation of slender camphor and naphthalene models in a supersonic wind-tunnel. DTIC DocumentGoogle Scholar
  12. 12.
    Kumar M, Ando Y (2003) Single-wall and multi-wall carbon nanotubes from camphor—a botanical hydrocarbon. Diam Relat Mater 12(10):1845–1850CrossRefGoogle Scholar
  13. 13.
    Dong G, Hüttinger K (2002) Consideration of reaction mechanisms leading to pyrolytic carbon of different textures. Carbon 40(14):2515–2528CrossRefGoogle Scholar
  14. 14.
    Liu F, Zhang Y (2010) Substrate-free synthesis of large area, continuous multi-layer graphene film. Carbon 48(9):2394–2400CrossRefGoogle Scholar
  15. 15.
    Ahmed M, Kishi N, Sugita R, Fukaya A, Khatri I, Liang J, Mominuzzaman SM, Soga T, Jimbo T (2013) Graphene synthesis by thermal chemical vapor deposition using solid precursor. J Mater Sci: Mater Electron 24:2151–2155Google Scholar
  16. 16.
    Kumar M (2011) Carbon nanotube synthesis and growth mechanism. In: Yellampalli S (ed) Carbon nanotubes - synthesis, characterization, applications. InTech. doi: 10.5772/978
  17. 17.
    Reznik B, Hüttinger K (2002) On the terminology for pyrolytic carbon. Carbon 40(4):621–624CrossRefGoogle Scholar
  18. 18.
    Mukhopadhyay K, Krishna KM, Sharon M (1994) Fullerenes from camphor: a natural source. Phys Rev Lett 72(20):3182CrossRefGoogle Scholar
  19. 19.
    TermehYousefi A, Bagheri S, Shinji K, Rouhi J, Rusop Mahmood M, Ikeda S (2014) Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material. BioMed Res Int 2014:691537Google Scholar
  20. 20.
    Kumar M, Ando Y (2005) Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support. Carbon 43(3):533–540CrossRefGoogle Scholar
  21. 21.
    Giorcelli M (2008) Growth and characterization of carbon nanotubes by CVD system. Politecnico di Torino, TurinGoogle Scholar
  22. 22.
    Mukhopadhyay K, Sharon M (1997) Glassy carbon from camphor—a natural source. Mater Chem Phys 49(2):105–109CrossRefGoogle Scholar
  23. 23.
    Mukhopadhyay K, Sharon M (1997) Diamond-like carbon film from camphor soot. Mater Manuf Process 12(3):541–554CrossRefGoogle Scholar
  24. 24.
    Sharon M, Mukhopadhyay K, Yase K, Iijima S, Ando Y, Zhao X (1998) Spongy carbon nanobeads—a new material. Carbon 36(5):507–511CrossRefGoogle Scholar
  25. 25.
    Oza G, Ravichandran M, Merupo V-I, Shinde S, Mewada A, Ramirez JT, Velumani S, Sharon M, Sharon M (2016) Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging. Sci Rep 6:21286CrossRefGoogle Scholar
  26. 26.
    Sharon M, Jain S, Kichambare P, Kumar M (1998) Effect of pyrolyzing time and temperature on the bandgap of camphor-pyrolyzed semiconducting carbon films. Mater Chem Phys 56(3):284–288CrossRefGoogle Scholar
  27. 27.
    Mohamad F, Noor UM, Rusop M Electrical properties of amorphous carbon thin films prepared from natural precursor of camphor. In: AIP conference proceedings, 2009. AIP, pp 606–610Google Scholar
  28. 28.
    Fadzilah AN, Dayana K, Rusop M (2012) Fabrication and characterization of camphor-based amorphous carbon thin films. In: Paper presented at the 5th Bangladesh society of mechanical engineers (BSME) international conference on thermal engineering, ICTE 2012 - Dhaka, BangladeshGoogle Scholar
  29. 29.
    Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430(1):56–59CrossRefGoogle Scholar
  30. 30.
    Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M (2010) Graphene constructed carbon thin films as transparent electrodes for solar cell applications. J Mater Chem 20:9713–9717. doi: 10.1039/c0jm01352h CrossRefGoogle Scholar
  31. 31.
    Ravani F, Papagelis K, Dracopoulos V, Parthenios J, Dassios KG, Siokou A, Galiotis C (2013) Graphene production by dissociation of camphor molecules on nickel substrate. Thin Solid Films 527:31–37CrossRefGoogle Scholar
  32. 32.
    Lai L-H, Yang J-S, Shiue S-T (2014) Characteristics of carbon films prepared by thermal chemical vapor deposition using camphor. Thin Solid Films 556:544–551CrossRefGoogle Scholar
  33. 33.
    Bokros J (1965) The structure of pyrolytic carbon deposited in a fluidized bed. Carbon 3(1):17–29CrossRefGoogle Scholar
  34. 34.
    Awitdrus MD, Talib IA, Omar R, Jumali MHH, Taer E, Saman MM (2010) Microcrystallite dimension and total active surface area of carbon electrode from mixtures of pre-carbonized oil palm empty fruit bunches and green petroleum cokes. Sains Malays 39(1):83–86Google Scholar
  35. 35.
    Manoj B, Kunjomana A (2012) Study of stacking structure of amorphous carbon by X-ray diffraction technique. Int J Electrochem Sci 7:3127–3134Google Scholar
  36. 36.
    Saikia BK, Boruah RK, Gogoi PK (2009) A X-ray diffraction analysis on graphene layers of Assam coal. J Chem Sci 121(1):103–106CrossRefGoogle Scholar
  37. 37.
    Subrahmanyam K, Vivekchand S, Govindaraj A, Rao C (2008) A study of graphenes prepared by different methods: characterization, properties and solubilization. J Mater Chem 18(13):1517–1523CrossRefGoogle Scholar
  38. 38.
    Behzadi S, Imani M, Yousefi M, Galinetto P, Simchi A, Amiri H, Stroeve P, Mahmoudi M (2012) Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications. Nanotechnology 23(4):045102CrossRefGoogle Scholar
  39. 39.
    Pimenta M, Dresselhaus G, Dresselhaus MS, Cancado L, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1290CrossRefGoogle Scholar
  40. 40.
    Chu PK, Li L (2006) Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys 96(2):253–277CrossRefGoogle Scholar
  41. 41.
    Feng S, Yang Y, Li L, Zhang D, Yang X, Bai S, Xia H, Yan L, Huai P, Zhou X (2015) Effect of Ar+ ion irradiation on the microstructure of pyrolytic carbon. J Appl Phys 117:115101–115107. doi: 10.1063/1.4915930 CrossRefGoogle Scholar
  42. 42.
    Feng S, Xu L, Li L, Bai S, Yang X, Zhou X (2013) Sealing nuclear graphite with pyrolytic carbon. J Nucl Mater 441:449–454CrossRefGoogle Scholar
  43. 43.
    Huang N, Yang P, Leng Y, Chen J, Sun H, Wang J, Wang G, Ding P, Xi T, Leng Y (2003) Hemocompatibility of titanium oxide films. Biomaterials 24(13):2177–2187CrossRefGoogle Scholar
  44. 44.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20CrossRefGoogle Scholar
  45. 45.
    Zhang H (2012) Mechanical and microstructural study of silicon carbide and pyrolytic carbon coatings in TRISO fuel particles. The University of Manchester, ManchesterGoogle Scholar
  46. 46.
    Kim YK, Kim WK, Cho MS, Cho HJ, Kim JH (2010) Density Measurement of Outer Pyrolytic Carbon layer of Simulated TRISO-Coated Particles with HfO2 Kernels. In: Paper presented at the transactions of the Korean nuclear society autumn meeting, Jeju, Korea, October 21–22, 2010Google Scholar
  47. 47.
    Ziegler I, Fournet R, Marquaire P-M (2005) Influence of surface on chemical kinetic of pyrocarbon deposition obtained by propane pyrolysis. J Anal Appl Pyrolysis 73(1):107–115CrossRefGoogle Scholar
  48. 48.
    McEvoy N, Peltekis N, Kumar S, Rezvani E, Nolan H, Keeley GP, Blau WJ, Duesberg GS (2012) Synthesis and analysis of thin conducting pyrolytic carbon films. Carbon 50(3):1216–1226CrossRefGoogle Scholar
  49. 49.
    ISO-10993-5 (2009) Biological evaluation of medical devices – Part 5: Tests for in vitro cytotoxicityGoogle Scholar
  50. 50.
    ISO-10993-4 (2002) Biological evaluation of medical devices. Part 4. Selection of tests for interaction with blood. AAMI standards and recommended practice, vol 4Google Scholar
  51. 51.
    Wu X, Yu X, Lin Z, Huang J, Cao L, Zhang B, Zhan Y, Meng H, Zhu Y, Zhang Y (2016) Nitrogen doped graphitic carbon ribbons from cellulose as non noble metal catalyst for oxygen reduction reaction. Int J Hydrog Energy 41:14111–14122CrossRefGoogle Scholar
  52. 52.
    Adelhelm P, De Jongh PE (2011) The impact of carbon materials on the hydrogen storage properties of light metal hydrides. J Mater Chem 21(8):2417–2427CrossRefGoogle Scholar
  53. 53.
    Coutinho AR, Rocha JD, Luengo CA (2000) Preparing and characterizing biocarbon electrodes. Fuel Process Technol 67(2):93–102CrossRefGoogle Scholar
  54. 54.
    Awasthi K, Kumar R, Raghubanshi H, Awasthi S, Pandey R, Singh D, Yadav TP, Srivastava ON (2011) Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials. Bull Mater Sci 34(4):607–614CrossRefGoogle Scholar
  55. 55.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New JerseyGoogle Scholar
  56. 56.
    López-Honorato E, Meadows P, Xiao P (2009) Fluidized bed chemical vapor deposition of pyrolytic carbon–I. Effect of deposition conditions on microstructure. Carbon 47(2):396–410CrossRefGoogle Scholar
  57. 57.
    Thema F, Moloto M, Dikio E, Nyangiwe N, Kotsedi L, Maaza M, Khenfouch M (2012) Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. Journal of Chemistry 2013Google Scholar
  58. 58.
    López-Honorato E, Meadows P, Xiao P, Marsh G, Abram T (2008) Structure and mechanical properties of pyrolytic carbon produced by fluidized bed chemical vapor deposition. Nucl Eng Des 238(11):3121–3128CrossRefGoogle Scholar
  59. 59.
    Wang Y-X, Fan W-X, Wang G-L, Ji M-X (2011) New insight into the graphene based films prepared from carbon fibers. Mater Sci Appl 2(07):833Google Scholar
  60. 60.
    D-s Zhang, K-z Li, L-j Guo, H-j Li, H-l Li (2012) Texture characterization and mechanical properties of pyrocarbon obtained by chemical vapor deposition at 1450–1550° C. Mater Sci Eng, A 539:1–6CrossRefGoogle Scholar
  61. 61.
    Li K, Zhang D, Guo L, Li H (2010) Micro-and nano-structure characterization of isotropic pyrocarbon obtained via chemical vapor deposition in hot wall reactor. J Mater Sci Technol 26(12):1133–1138CrossRefGoogle Scholar
  62. 62.
    López-Honorato E, Meadows P, Shatwell R, Xiao P (2010) Characterization of the anisotropy of pyrolytic carbon by Raman spectroscopy. Carbon 48(3):881–890CrossRefGoogle Scholar
  63. 63.
    Ferrari A, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095CrossRefGoogle Scholar
  64. 64.
    Zhang H, Lo´pez-Honorato E, Xiao P (2015) Fluidized bed chemical vapor deposition of pyrolytic carbon-III. Relationship between microstructure and mechanical properties. Carbon 91:346–357CrossRefGoogle Scholar
  65. 65.
    Umair A, Raza TZ, Raza H (2016) Ultrathin pyrolytic carbon films on a magnetic substrate. Mater Res Express 3(075601):1–5Google Scholar
  66. 66.
    Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP (1996) Raman spectroscopy on amorphous carbon films. J Appl Phys 80(1):440–447CrossRefGoogle Scholar
  67. 67.
    Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRefGoogle Scholar
  68. 68.
    Cancado LG, Pimenta MA, Saito R, Jorio A, Ladeira LO, Grueneis A, Souza-Filho AG, Dresselhaus G, Dresselhaus MS (2002) Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys Rev B 66(3):035415CrossRefGoogle Scholar
  69. 69.
    Ray K, McCreery RL (1997) Spatially resolved Raman spectroscopy of carbon electrode surfaces: observations of structural and chemical heterogeneity. Anal Chem 69(22):4680–4687CrossRefGoogle Scholar
  70. 70.
    Zoubir A (2012) Raman imaging: techniques and applications, vol 168. Springer, BerlinCrossRefGoogle Scholar
  71. 71.
    Oma KH, Rusin JM, Kidd RW, Browning MF Alternative waste form development-low-temperature pyrolytic carbon coatings. In: Proc. Symp. Waste Manage.;(United States), 1981. Battelle, Pac Northwest Lab, Richland, Wash, USAGoogle Scholar
  72. 72.
    Oma KH, Buckwalter CQ, Chick LA (1981) Coated particle waste form development. Pacific Northwest Lab, RichlandCrossRefGoogle Scholar
  73. 73.
    dos Santos V, Brandalise RN, Savaris M (2017) Biomaterials: characteristics and properties. In: Engineering of biomaterials. Springer, pp 5–15. doi: 10.1007/978-3-319-58607-6_2
  74. 74.
    Litzler P-Y, Benard L, Barbier-Frebourg N, Vilain S, Jouenne T, Beucher E, Bunel C, Lemeland J-F, Bessou J-P (2007) Biofilm formation on pyrolytic carbon heart valves: influence of surface free energy, roughness, and bacterial species. J Thorac Cardiovas Surg 134(4):1025–1032CrossRefGoogle Scholar
  75. 75.
    Kaplas T, Kuzhir P (2017) Ultra-thin pyrocarbon films as a versatile coating material. Nanoscale Res Lett. doi: 10.1186/s11671-017-1896-0 Google Scholar
  76. 76.
    Roy RK, Lee KR (2007) Biomedical applications of diamond like carbon coatings: a review. J Biomed Mater Res Part B Appl Biomater 83(1):72–84CrossRefGoogle Scholar
  77. 77.
    Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng, R 36:143–206CrossRefGoogle Scholar
  78. 78.
    Nezafati M (2014) Silicon carbide nanowires as a biomaterial. In: Biomaterial Testing Methodology for Long-Term in vivo Applications: Silicon Carbide Corrosion Resistance, Biocompatibility and Hemocompatibility. University of South Florida, pp 83–93Google Scholar
  79. 79.
    Deyneka-Dupriez N, Herr U, Fecht H-J, Pfrang A, Schimmel T, Reznik B, Gerthsen D (2008) Interfacial adhesion and friction of pyrolytic carbon thin films on silicon substrates. Mater Res Soc 23(10):2749–2756. doi: 10.1557/JMR.2008.0339 CrossRefGoogle Scholar
  80. 80.
    Bhardwaj V, Chowdhury R, Jayaganthan R (2017) Adhesion strength and nanomechanical characterization of ZnO thin films. Mater Res Soc. doi: 10.1557/jmr.2017.85 Google Scholar
  81. 81.
    Hofmann G, Wiedenmeier M, Freund M, Beavan A, Hay J, Pharr G (2000) An investigation of the relationship between position within coater and pyrolytic carbon characteristics using nanoindentation. Carbon 38(5):645–653CrossRefGoogle Scholar
  82. 82.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2012) Biomaterials science: an introduction to materials in medicine, 3rd edn. Academic Press, CambridgeGoogle Scholar
  83. 83.
    Bowden FP, Tabor D (2001) The friction and lubrication of solids. Oxford University Press, New York, pp 112–163Google Scholar
  84. 84.
    Fedel M (2013) Blood compatibility of diamond- like carbon (DLC) coatings. Diamond-based materials for biomedical applications:71-102Google Scholar
  85. 85.
    Horbett TA (1993) Principles underlying the role of adsorbed plasma proteins in blood interactions with foreign materials. Cardiovas Pathol 2(3):137–148CrossRefGoogle Scholar
  86. 86.
    Goodman SL (1999) Sheep, pig, and human platelet-material interactions with model cardiovascular biomaterials. J Biomed Mater Res 45(3):240–250CrossRefGoogle Scholar
  87. 87.
    Xu L-C, Siedlecki CA (2007) Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28(22):3273–3283CrossRefGoogle Scholar
  88. 88.
    González B, Benítez H, Rufino K, Fernández M, Echevarría W (December 2003) “Biomechanics of mechanical heart valve” In: Paper presented at the applications of engineering mechanics in medicine, GED at University of Puerto Rico, MayaguezGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Gas Conversion Department, Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Novel Drug Delivery Systems Department, Faculty of ScienceIran Polymer and Petrochemical InstituteTehranIran
  3. 3.Animal and Marine Biotechnology DepartmentNational Institute of Genetic Engineering and BiotechnologyTehranIran

Personalised recommendations