Skip to main content

Advertisement

Log in

Investigation of the electrochemical performance of polyvinylidene fluoride-derived LiFePO4/C composite nanospheres

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The wide application of LiFePO4 (LFP) in high-power lithium-ion batteries is limited due to its two main drawbacks: poor electronic conductivity and low lithium-ion diffusivity, which can be greatly improved through a combination of reducing the LFP crystallites to nanoscale and introducing a conductive carbon coating layer. It is well accepted that the choice of carbon precursors has a significant impact on the ultimate lithium storage property of the LiFePO4/carbon (LFP/C) composite. In this work, LFP/C core–shell composite nanospheres using polyvinylidene fluoride (PVDF) as carbon source (LFP/C-PVDF) were prepared and the electrochemical performances in lithium half cells were investigated. The electrochemical properties of LFP/C composite derived from glucose (LFP/C-GLU) and the bare LFP without carbon coating were also investigated for comparison. It was found that LFP/C-PVDF displayed a higher capacity, better rate capability and smaller polarization than its LFP/C-GLU and LFP counterparts, which could be ascribed to lower surface and charge-transfer impedances, and an enhanced lithium-ion diffusivity, as revealed by electrochemical impedance spectroscopy analysis. Our study demonstrates that PVDF is a facile and potential carbon precursor for LiFePO4 in high-performance lithium-ion battery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy K, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  Google Scholar 

  2. Li Z, Zhang D, Yang F (2009) J Mater Sci 44:2435. doi:10.1007/s10853-009-3316-z

    Article  Google Scholar 

  3. Zaghib K, Mauger A, Goodenough J, Julien C (2012) Nanotechnology for lithium-ion batteries. Springer, NY, pp 179–220

    Book  Google Scholar 

  4. Joachin H, Kaun TD, Zaghib K, Prakash J (2009) J Electrochem Soc 156:A401

    Article  Google Scholar 

  5. Dinh HC, Mho S, Yeo IH (2011) Electroanalysis 23:2079

    Article  Google Scholar 

  6. Wang D, Li H, Shi S, Huang X, Chen L (2005) Electrochim Acta 50:2955

    Article  Google Scholar 

  7. Ma J, Li B, Du H, Xu C, Kang F (2012) J Solid State Electrochem 16:1

    Article  Google Scholar 

  8. Chang Z-R, Lv H-J, Tang H-W, Li H-J, Yuan X-Z, Wang H (2009) Electrochim Acta 54:4595

    Article  Google Scholar 

  9. Kim J-K, Cheruvally G, Ahn J-H (2008) J Solid State Electrochem 12:799

    Article  Google Scholar 

  10. Gaberscek M, Dominko R, Bele M, Remskar M, Hanzel D, Jamnik J (2005) Solid State Ionics 176:1801

    Article  Google Scholar 

  11. Luo SH, Tang ZL, Lu JB, Zhang ZT (2007) Chin Chem Lett 18:237

    Article  Google Scholar 

  12. Zhou Y, Gu C, Zhou J et al (2011) Electrochim Acta 56:5054

    Article  Google Scholar 

  13. Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) Angew Chem Int Ed 47:7461

    Article  Google Scholar 

  14. Geng H, Ming H, Ge D, Zheng J, Gu H (2015) Electrochim Acta 157:1

    Article  Google Scholar 

  15. Geng H, Zhou Q, Pan Y, Gu H, Zheng J (2014) Nanoscale 6:3889

    Article  Google Scholar 

  16. Rui X, Li C, Chen C (2009) Electrochim Acta 54:3374

    Article  Google Scholar 

  17. Lu D, Xu M, Zhou L, Garsuch A, Lucht BL (2013) J Electrochem Soc 160:A3138

    Article  Google Scholar 

  18. Belharouak I, Johnson C, Amine K (2005) Electrochem Commun 7:983

    Article  Google Scholar 

  19. Goodenough JB, Park K-S (2013) J Am Chem Soc 135:1167

    Article  Google Scholar 

  20. Smart MC, Lucht BL, Dalavi S, Krause FC, Ratnakumar BV (2012) J Electrochem Soc 159:A739

    Article  Google Scholar 

  21. Reddy MV, Wei Wen BL, Loh KP, Chowdari BVR (2013) ACS Appl Mater Interfaces 5:7777

    Article  Google Scholar 

  22. Reddy M, Subba Rao G, Chowdari B (2007) J Phys Chem C 111:11712

    Article  Google Scholar 

  23. Reddy M, Madhavi S, Rao GS, Chowdari B (2006) J Power Sources 162:1312

    Article  Google Scholar 

  24. Wang X, Hao H, Liu J, Huang T, Yu A (2011) Electrochim Acta 56:4065

    Article  Google Scholar 

  25. Yang M, Zhao X, Bian Y, Ma L, Ding Y, Shen X (2012) J Mater Chem 22:6200

    Article  Google Scholar 

  26. Gao F, Tang Z (2008) Electrochim Acta 53:5071

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from National Natural Science Foundation of China (21503036) and Sichuan Science and Technology Support Program (2016GZ0236, 2016GZ0021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Feng or Mengqiang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Jiang, W., Zong, Z. et al. Investigation of the electrochemical performance of polyvinylidene fluoride-derived LiFePO4/C composite nanospheres. J Mater Sci 53, 1279–1285 (2018). https://doi.org/10.1007/s10853-017-1585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1585-5

Keywords

Navigation