Skip to main content

Advertisement

Log in

Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The flower-like Co3O4 particles with three-dimensional structure have been achieved by inheriting the flower-like framework of β-Co(OH)2 particles fabricated by a facile solvothermal method without any surfactant. The obtained Co3O4 microflower, which was composed of large amounts of self-assembled porous ultrathin nanosheets, exhibited excellent electrochemical performances in terms of high specific capacity and good cycle stability when being evaluated as anode materials for lithium-ion battery. Specifically, a high reversible capacity of above 1100 mA h g−1 was achieved after 50 cycles at the current density of 296 mA g−1. Hierarchical flower-like structure with mesoporous was considered as providing more active sites for Li+ insertion and paths for transport of Li+, which led to faster lithium-ion diffusion. Co3O4 porous flower-like nanostructures possessed significant potential application in energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  Google Scholar 

  3. Wang J, Zhang Q, Li X, Xu D, Wang Z, Guo H, Zhang K (2014) Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6:19–26

    Article  Google Scholar 

  4. Ding C, Zhao Y, Yan D, Zhao Y, Zhou H, Li J, Jin H (2016) An insight into the convenience and efficiency of the freeze-drying route to construct 3D graphene-based hybrids for lithium-ion batteries. Electrochim Acta 221:124–132

    Article  Google Scholar 

  5. Zhao Y, Yan D, Ding C, Su D, Ge Y, Zhao Y, Zhou H, Li J, Jin H (2016) Fe2O3 nanocubes exposed (012) active facets combination with graphene rendering enhanced lithium storage capability. J Power Sources 327:658–665

    Article  Google Scholar 

  6. Ding C, Yan D, Zhao Y, Zhao Y, Zhou H, Li J, Jin H (2016) A bubble-template approach for assembling Ni–Co oxide hollow microspheres with an enhanced electrochemical performance as an anode for lithium ion batteries. Phys Chem Chem Phys 18(37):25879–25886

    Article  Google Scholar 

  7. Wu X, Wu W, Wang K, Chen W, He D (2015) Synthesis and electrochemical performance of flower-like MnCo2O4 as an anode material for sodium ion batteries. Mater Lett 147:85–87

    Article  Google Scholar 

  8. Xia Y, Xiong Y, Lim B, Skrabalak S (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew Chem Int Ed 48(1):60–103

    Article  Google Scholar 

  9. Fang D, Li L, Xu W, Li G, Li G, Wang N, Luo Z, Xu J, Liu L, Huang CL, Liang C (2013) Self-assembled hairy ball-like Co3O4 nanostructures for lithium ion batteries. J Mater Chem A 1:13203–13208

    Article  Google Scholar 

  10. Kong D, Luo J, Wang Y, Ren W, Yu T, Luo Y, Yang Y, Cheng C (2014) Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: morphology control and electrochemical energy storag. Adv Funct Mater 24(24):3815–3826

    Article  Google Scholar 

  11. Wang D, Wang Q, Wang T (2011) Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg Chem 50(14):6482–6492

    Article  Google Scholar 

  12. Yan N, Hu L, Li Y, Wang Y, Zhong H, Hu X, Kong X, Chen Q (2012) Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J Phys Chem C 116(12):7227–7235

    Article  Google Scholar 

  13. Zhuo L, Wu Y, Ming J, Wang L, Yu Y, Zhang X, Zhao F (2013) Facile synthesis of a Co3O4–carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J Mater Chem A 1(4):1141–1147

    Article  Google Scholar 

  14. Wang Z, Zhou L (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24(14):1903–1911

    Article  Google Scholar 

  15. Yan C, Chen G, Zhou X, Sun J, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater 26(9):1428–1436

    Article  Google Scholar 

  16. Liu J, Kelly SJ, Epstein ES, Pan Z, Huang X, Liu J, Braun PV (2015) Three-dimensionally scaffolded Co3O4 nanosheet anodes with high rate performance. J Power Sources 299:40–48

    Article  Google Scholar 

  17. Wang HW, Hu ZA, Chang YQ, Chen Y, Zhang Z, Yang Y, Wu H (2011) Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix. Mater Chem Phys 130(1):672–679

    Article  Google Scholar 

  18. Park JS, Cho JS, Kim JH, Choi YJ, Kang YC (2016) Electrochemical properties of micron-sized Co3O4 hollow powders consisting of size controlled hollow nanospheres. J Alloys Compd 689:554–563

    Article  Google Scholar 

  19. Zhang XX, Xie QS, Yue GH, Zhang Y, Zhang XQ, Lu AL, Peng DL (2013) A novel hierarchical network-like Co3O4 anode material for lithium batteries. Electrochim Acta 111:746–754

    Article  Google Scholar 

  20. Zhao Y, Li Y, Ma C, Shao Z (2016) Micro-/nano-structured hybrid of exfoliated graphite and Co3O4 nanoparticles as high-performance anode material for Li-ion batteries. Electrochim Acta 213:98–106

    Article  Google Scholar 

  21. Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S-T (1997) Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101(39):7717–7722

    Article  Google Scholar 

  22. Lübke M, Shin J, Marchand P, Brett D, Shearing P, Liu Z, Darr JA (2015) Highly pseudocapacitive Nb-doped TiO2 high power anodes for lithium-ion batteries. J Mater Chem A 3:22908–22914

    Article  Google Scholar 

  23. Lübke M, Sumboja A, Johnson ID, Brett D, Shearing P, Liu Z, Darr JA (2016) High power nano-Nb2O5 negative electrodes for lithium-ion batteries. Electrochim Acta 192:363–369

    Article  Google Scholar 

  24. Pan L, Zhao H, Shen W, Dong X, Xu J (2013) Surfactant-assisted synthesis of a Co3O4/reduced graphene oxide composite as a superior anode material for Li-ion batteries. J Mater Chem A 1(24):7159–7166

    Article  Google Scholar 

  25. Zhu X, Ning G, Ma X, Fan Z, Xu C, Gao J, Xu C, Wei F (2013) High density Co3O4 nanoparticles confined in a porous graphene nanomesh network driven by an electrochemical process: ultra-high capacity and rate performance for lithium ion batteries. J Mater Chem A 1(44):14023–14030

    Article  Google Scholar 

  26. Wang Y, Yan F, Liu SW, Tan AYS, Song H, Sun XW, Yang HY (2013) Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability. J Mater Chem A 1(17):5212–5216

    Article  Google Scholar 

  27. Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D (2013) Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem 125(25):6545–6548

    Article  Google Scholar 

  28. Li H, Ma H, Yang M, Wang B, Shao H, Wang L, Yu R, Wang D (2017) Highly controlled synthesis of multi-shelled NiO hollow microspheres for enhanced lithium storage properties. Mater Res Bull 87:224–229

    Article  Google Scholar 

  29. Zhang J, Ren H, Wang J, Qi J, Yu R, Wang D, Liu Y (2016) Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries. J Mater Chem A 4(45):17673–17677

    Article  Google Scholar 

  30. Fan Y, Shao H, Wang J, Liu L, Zhang J, Cao C (2011) Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities. Chem Commun 47(12):3469–3471

    Article  Google Scholar 

  31. Zhao Y, Xu X, Zhao Y, Zhou H, Li J, Jin H (2016) Synthesis and their physicochemical behaviors of flower-like Co3O4 microspheres. J Alloys Compd 654:523–528

    Article  Google Scholar 

  32. Ding C, Su D, Ma W, Zhao Y, Yan D, Li J, Jin H (2017) Design of hierarchical CuS/graphene architectures with enhanced lithium storage capability. Appl Surf Sci 403:1–8

    Article  Google Scholar 

  33. Xu X, Zhao Y, Li J, Jin H, Zhao Y, Zhou H (2015) Hydrothermal synthesis of cobalt particles with hierarchy structure and physicochemical properties. Mater Res Bull 72:7–12

    Article  Google Scholar 

  34. Zhao Y, Zhang X, Wang C, Zhao Y, Zhou H, Li J, Jin H (2017) The synthesis of hierarchical nanostructured MoS2/Graphene composites with enhanced visible-light photo-degradation property. Appl Surf Sci 412:207–213

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51602023) and Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Xu, X., Zhu, X. et al. Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries. J Mater Sci 53, 1356–1364 (2018). https://doi.org/10.1007/s10853-017-1579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1579-3

Keywords

Navigation