Effect of molecular architecture on morphology in the nanostructures and its applications in superhydrophobicity and organic photovoltaics

Abstract

Morphological structures with respect to the effect of carbazole derivatization, which are based on conjugated donor–acceptor moieties, are presently explored. In this work, light management studies, organic photovoltaics devices and surface properties are systematically investigated. Two carbazole derivatives Cz–Bt (carbazole–benzothiadiazole) and Cz–Bt–BT (carbazole–benzothiadiazole–bithiophene) are electrosprayed, resulting in triangle and spike (2-D and 3-D pyramids) structures, respectively. These 2-D and 3-D pyramids differ due to an additional bithiophene unit at the molecular level, which has imparted a higher degree of rotational freedom. The effects of derivatives, solution concentrations and solvents vapor pressure on morphology are studied. Further, these submicron-size pyramids are characterized by enhancement in light absorption due to scattering and multi-reflection. It is observed that 2-D pyramids enhance up to 44.4%, whereas 3-D pyramids enhance up to 18.7% of light absorption. Subsequently, these structures are characterized in organic photovoltaics architecture, using various layer design strategies, and, thus, we able to obtain insights about layer addition, with respect to structures size and morphology. In addition, the effect of fabrication procedure assisting in an increase in hydrophobicity is also demonstrated.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

References

  1. 1

    Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923. doi:10.1021/cr900182s

    Article  Google Scholar 

  2. 2

    Kim FS, Ren G, Jenekhe SA (2011) One-dimensional nanostructures of π-conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem Mater 23:682–732. doi:10.1021/cm102772x

    Article  Google Scholar 

  3. 3

    Shang H, Fan H, Shi Q et al (2010) Solution processable D–A–D molecules based on triphenylamine for efficient organic solar cells. Sol Energy Mater Sol Cells 94:457–464. doi:10.1016/j.solmat.2009.11.005

    Article  Google Scholar 

  4. 4

    Tamayo AB, Dang X-D, Walker B et al (2009) A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells. APL Org Electron Photonics 2:73–73. doi:10.1063/1.3086897

    Google Scholar 

  5. 5

    Wang T-L, Yeh A-C, Yang C-H et al (2011) Synthesis and photovoltaic properties of a low bandgap donor–acceptor alternating copolymer with benzothiadiazole unit. Sol Energy Mater Sol Cells 95:3295–3302. doi:10.1016/j.solmat.2011.07.021

    Article  Google Scholar 

  6. 6

    Jin J-K, Choi J-K, Kim B-J et al (2011) Synthesis and photovoltaic performance of low-bandgap polymers on the basis of 9,9-dialkyl-3,6-dialkyloxysilafluorene. Macromolecules 44:502–511. doi:10.1021/ma102173a

    Article  Google Scholar 

  7. 7

    Karpicz R, Puzinas S, Sulskus J et al (2012) Electronic properties of carbazole–fluorene–benzothiadiazole compounds revealed by time resolved spectroscopy and quantum chemistry calculations. Chem Phys 404:82–87. doi:10.1016/j.chemphys.2012.03.007

    Article  Google Scholar 

  8. 8

    Xu C, Zhao J, Wang M et al (2013) Electrosynthesis and characterization of a donor–acceptor type electrochromic material from poly(4,7-dicarbazol-9-yl-2,1,3-benzothiadia-zole) and its application in electrochromic devices. Thin Solid Films 527:232–238. doi:10.1016/j.tsf.2012.12.052

    Article  Google Scholar 

  9. 9

    Putri SK, Lee MS, Chang DW, Kim JH (2016) Fluorinated benzothiadiazole-based small molecules for photovoltaic applications. Synth Met 220:455–461. doi:10.1016/j.synthmet.2016.07.018

    Article  Google Scholar 

  10. 10

    Kuznetsov IE, Susarova DK, Inasaridze LN et al (2015) Synthesis of statistical carbazole–fluorene–thiophene–benzothiadiazole copolymers and their investigation in organic solar cells. Mendeleev Commun 25:277–279. doi:10.1016/j.mencom.2015.07.016

    Article  Google Scholar 

  11. 11

    Venkateswararao A, Thomas KRJ, Lee C-P et al (2014) Organic dyes containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties. ACS Appl Mater Interfaces 6:2528–2539. doi:10.1021/am404948w

    Article  Google Scholar 

  12. 12

    Thongkasee P, Thangthong A, Janthasing N et al (2014) Carbazole-dendrimer-based donor–π–acceptor type organic dyes for dye-sensitized solar cells: effect of the size of the carbazole dendritic donor. ACS Appl Mater Interfaces 6:8212–8222. doi:10.1021/am500947k

    Article  Google Scholar 

  13. 13

    Grova IR, Coutinho DJ, Faria RM, Akcelrud L (2013) Synthesis and photovoltaic performance of a fluorene–bithiophene copolymer. J Polym Res 20:119. doi:10.1007/s10965-013-0119-3

    Article  Google Scholar 

  14. 14

    Sathiyan G, Sivakumar EKT, Ganesamoorthy R et al (2016) Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Lett 57:243–252. doi:10.1016/j.tetlet.2015.12.057

    Article  Google Scholar 

  15. 15

    Pisharady SK, Menon CS, Sudarshanakumar C (2005) Optical and electrical properties of carbazole thin film. J Mater Sci 40:2047–2049. doi:10.1007/s10853-005-1230-6

    Article  Google Scholar 

  16. 16

    Kato S, Shimizu S, Kobayashi A et al (2014) Systematic structure-property investigations on a series of alternating carbazole–thiophene oligomers. J Org Chem 79:618–629. doi:10.1021/jo402416f

    Article  Google Scholar 

  17. 17

    Sahu D, Padhy H, Patra D et al (2010) Synthesis and application of H-bonded cross-linking polymers containing a conjugated pyridyl H-acceptor side-chain polymer and various carbazole-based H-donor dyes bearing symmetrical cyanoacrylic acids for organic solar cells. Polymer 51:6182–6192. doi:10.1016/j.polymer.2010.10.018

    Article  Google Scholar 

  18. 18

    Zhao Z, Xu X, Wang H et al (2007) Zigzag molecules from pyrene-modified carbazole oligomers: synthesis, characterization, and application in OLEDs. J Org Chem 73:594–602. doi:10.1021/jo702075r

    Article  Google Scholar 

  19. 19

    Wang L, Fu Y, Zhu L et al (2011) Synthesis and photovoltaic properties of low-bandgap polymers based on N-arylcarbazole. Polymer 52:1748–1754. doi:10.1016/j.polymer.2011.02.029

    Article  Google Scholar 

  20. 20

    Barpuzary D, Patra AS, Vaghasiya JV et al (2014) Highly efficient one-dimensional ZnO nanowire-based dye-sensitized solar cell using a metal-free, D–π–A-type, carbazole derivative with more than 5% power conversion. ACS Appl Mater Interfaces 6:12629–12639. doi:10.1021/am5026193

    Article  Google Scholar 

  21. 21

    Fei-Peng C, Bin X, Zu-Jin Z et al (2010) White organic light-emitting diodes based on electroplex from polyvinyl carbazole and carbazole oligomers blends. Chin Phys B 19:037801. doi:10.1088/1674-1056/19/3/037801

    Article  Google Scholar 

  22. 22

    Balaji G, Shim WL, Parameswaran M, Valiyaveettil S (2009) Thiadiazole fused indolo[2,3-a]carbazole based oligomers and polymer. Org Lett 11:4450–4453. doi:10.1021/ol901806q

    Article  Google Scholar 

  23. 23

    Chu Z, Wang D, Zhang C et al (2009) Synthesis of dendritic oligo-spiro(fluorene-9,9′-xanthene) derivatives with carbazole and fluorene pendants and their thermal, optical, and electroluminescent properties. Macromol Rapid Commun 30:1745–1750. doi:10.1002/marc.200900268

    Article  Google Scholar 

  24. 24

    Tao Y-M, Li H-Y, Xu Q-L et al (2011) Synthesis and characterization of efficient luminescent materials based on 2,1,3-benzothiadiazole with carbazole moieties. Synth Met 161:718–723. doi:10.1016/j.synthmet.2011.01.020

    Article  Google Scholar 

  25. 25

    Lee JY, Song KW, Song HJ, Moon DK (2011) Synthesis and photovoltaic property of donor–acceptor type conjugated polymer containing carbazole and 4,7-dithiazolylbenzothiadiazole moiety utilized as a promising electron withdrawing unit. Synth Met 161:2434–2440. doi:10.1016/j.synthmet.2011.09.021

    Article  Google Scholar 

  26. 26

    Umeyama T, Watanabe Y, Douvogianni E, Imahori H (2013) Effect of fluorine substitution on photovoltaic properties of benzothiadiazole-carbazole alternating copolymers. J Phys Chem C 117:21148–21157. doi:10.1021/jp407707u

    Article  Google Scholar 

  27. 27

    Casey A, Ashraf RS, Fei Z, Heeney M (2014) Thioalkyl-substituted benzothiadiazole acceptors: copolymerization with carbazole affords polymers with large stokes shifts and high solar cell voltages. Macromolecules 47:2279–2288. doi:10.1021/ma5000943

    Article  Google Scholar 

  28. 28

    Hu S, Bao X, Liu Z et al (2014) Benzothiadiazole[1,2-b:4,3-b′]dithiophene, a new ladder-type multifused block: synthesis and photovoltaic application. Org Electron 15:3601–3608. doi:10.1016/j.orgel.2014.10.003

    Article  Google Scholar 

  29. 29

    Sylvianti N, Kim YW, Marsya MA et al (2016) A–D–A type conjugated oligomers based on benzothiadiazole and their photovoltaic applications. Synth Met 221:127–133. doi:10.1016/j.synthmet.2016.08.012

    Article  Google Scholar 

  30. 30

    Ranjith K, Swathi SK, Kumar P, Ramamurthy PC (2010) Pulsed laser deposition film of a donor–acceptor–donor polymer as possible active layer in devices. J Mater Sci 46:2259–2266. doi:10.1007/s10853-010-5065-4

    Article  Google Scholar 

  31. 31

    Ranjith K, Swathi SK, Kumar P, Ramamurthy PC (2012) Dithienylcyclopentadienone derivative-co-benzothiadiazole: an alternating copolymer for organic photovoltaics. Sol Energy Mater Sol Cells 98:448–454. doi:10.1016/j.solmat.2011.11.034

    Article  Google Scholar 

  32. 32

    Hong M, Ravva MK, Winget P, Brédas J-L (2016) Effect of substituents on the electronic structure and degradation process in carbazole derivatives for blue OLED host materials. Chem Mater 28:5791–5798. doi:10.1021/acs.chemmater.6b02069

    Article  Google Scholar 

  33. 33

    Jiang D, Chen S, Xue Z et al (2016) Donor–acceptor molecules based on benzothiadiazole: synthesis, X-ray crystal structures, linear and third-order nonlinear optical properties. Dyes Pigments 125:100–105. doi:10.1016/j.dyepig.2015.10.014

    Article  Google Scholar 

  34. 34

    Sakthivel P, Song HS, Chakravarthi N et al (2013) Synthesis and characterization of new indeno[1,2-b]indole-co-benzothiadiazole-based π-conjugated ladder type polymers for bulk heterojunction polymer solar cells. Polymer 54:4883–4893. doi:10.1016/j.polymer.2013.07.004

    Article  Google Scholar 

  35. 35

    Zheng J, Zhang H, Zhao Z, Han CC (2012) Construction of hierarchical structures by electrospinning or electrospraying. Polymer 53:546–554. doi:10.1016/j.polymer.2011.12.018

    Article  Google Scholar 

  36. 36

    Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. doi:10.1016/S0266-3538(03)00178-7

    Article  Google Scholar 

  37. 37

    Park CH, Lee J (2009) Electrosprayed polymer particles: effect of the solvent properties. J Appl Polym Sci 114:430–437. doi:10.1002/app.30498

    Article  Google Scholar 

  38. 38

    Scholten E, Dhamankar H, Bromberg L et al (2011) Electrospray as a tool for drug micro- and nanoparticle patterning. Langmuir 27:6683–6688. doi:10.1021/la201065n

    Article  Google Scholar 

  39. 39

    Zhang Q, Liu J, Wang X et al (2010) Controlling internal nanostructures of porous microspheres prepared via electrospraying. Colloid Polym Sci 288:1385–1391. doi:10.1007/s00396-010-2273-z

    Article  Google Scholar 

  40. 40

    Ramamurthy P, Mishra S et al (2014) Fabrication of hollow microspheres using single step electrospraying process. J Res Updat Polym Sci 3:108–113. doi:10.6000/1929-5995.2014.03.02.5

    Article  Google Scholar 

  41. 41

    Wu Y, Clark RL (2007) Controllable porous polymer particles generated by electrospraying. J Colloid Interface Sci 310:529–535. doi:10.1016/j.jcis.2007.02.023

    Article  Google Scholar 

  42. 42

    Jung JH, Lee JE, Bae G-N (2013) Use of electrosprayed Sophora flavescens natural-product nanoparticles for antimicrobial air filtration. J Aerosol Sci 57:185–193. doi:10.1016/j.jaerosci.2012.09.004

    Article  Google Scholar 

  43. 43

    Kim Y, Lee J, Kang H et al (2012) Controlled electro-spray deposition of highly conductive PEDOT:PSS films. Sol Energy Mater Sol Cells 98:39–45. doi:10.1016/j.solmat.2011.10.025

    Article  Google Scholar 

  44. 44

    Chen J-Y, Kuo C-C, Lai C-S et al (2011) Manipulation on the morphology and electrical properties of aligned electrospun nanofibers of poly(3-hexylthiophene) for field-effect transistor applications. Macromolecules 44:2883–2892. doi:10.1021/ma102286m

    Article  Google Scholar 

  45. 45

    Wang X, Kim Y-G, Drew C et al (2004) Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors. Nano Lett 4:331–334. doi:10.1021/nl034885z

    Article  Google Scholar 

  46. 46

    Ma M, Gupta M, Li Z et al (2007) Decorated electrospun fibers exhibiting superhydrophobicity. Adv Mater 19:255–259. doi:10.1002/adma.200601449

    Article  Google Scholar 

  47. 47

    Khanum KK, K R, Ramamurthy PC (2014) Various architectures of electrosprayed photoactive materials: A step towards light management. In: MRS online proceedings library archive. doi:10.1557/opl.2014.738

  48. 48

    Han L, Zu X, Cui Y et al (2014) Novel D–A–π–A carbazole dyes containing benzothiadiazole chromophores for dye-sensitized solar cells. Org Electron 15:1536–1544. doi:10.1016/j.orgel.2014.04.016

    Article  Google Scholar 

  49. 49

    Li J, Grimsdale AC (2010) Carbazole-based polymers for organic photovoltaic devices. Chem Soc Rev 39:2399–2410. doi:10.1039/B915995A

    Article  Google Scholar 

  50. 50

    Khanum KK, Ramamurthy PC (2015) Design and morphology control of a thiophene derivative through electrospraying using various solvents. RSC Adv 5:60419–60425. doi:10.1039/C5RA06468F

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Ranjith K. for synthesizing Cz–Bt and Cz–Bt–BT, which was used here as a case study and Gourav Tarafdar for his valuable input in dihedral studies. Further, the authors would like to acknowledge the Department of Science and Technology, India, DST: SR/S3/ME/0051/2012 for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Praveen C. Ramamurthy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2248 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khanum, K.K., Ramamurthy, P.C. Effect of molecular architecture on morphology in the nanostructures and its applications in superhydrophobicity and organic photovoltaics. J Mater Sci 53, 1264–1278 (2018). https://doi.org/10.1007/s10853-017-1578-4

Download citation

Keywords

  • Organic Photovoltaic Devices
  • Carbazole Derivatives
  • Benzothiadiazole
  • Bithiophene (BT)
  • Electrospray Sample