Skip to main content
Log in

Manganese oxides derived from Mn(II)-based metal–organic framework as supercapacitor electrode materials

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Manganese oxides have been received increasing interest due to their potential application in supercapacitor electrode material. In this paper, a new metal–organic framework Mn3(MA)(H2O)2(ipa)3 (1) (H2ipa = isophthalic acid; MA = melamine) was synthesized via hydrothermal reaction; it presents a 3D network structure which can be simplified as an unusual non-interpenetrated pseudo-primitive 6-connected cubic topology. The Mn-MOF was regarded as a precursor to prepare variety of manganese oxides via calcination in different environments. Cyclic voltammetry and galvanostatic charge–discharge measurements were employed to characterize the electrochemical performance of MnO X materials in Na2SO4 electrolyte. The results show that the MnO X materials reveal excellent long-term cycling stability with enhanced capacitance after charge–discharge cycles. The optimum specific capacitance can be 150 F g−1 with a current density of 1.0 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  2. Chen LB, Chen YR, Wu JF, Wang JW, Bai H, Li L (2014) Electrochemical supercapacitor with polymeric active electrolyte. J Mater Chem A 2:10526–10531

    Article  Google Scholar 

  3. Zhao Y, Song ZX, Li X, Sun Q, Cheng NC, Lawes S, Sun XL (2016) Metal organic frameworks for energy storage and conversion. Energy Storage Mater 2:35–62

    Article  Google Scholar 

  4. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin. Science 343:1210–1211

    Article  Google Scholar 

  5. Klankowski SA, Pandey GP, Malek G, Thomas CR, Bernasek SL, Wu J, Li J (2015) Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers. Nanoscale 7:8485–8494

    Article  Google Scholar 

  6. Tang YF, Liu YY, Yu SX, Mu SC, Xiao SH, Zhao YF, Gao FM (2014) Morphology controlled synthesis of monodisperse cobalt hydroxide for supercapacitor with high performance and long cycle life. J Power Sources 256:160–169

    Article  Google Scholar 

  7. Yang PH, Mai WJ (2014) Flexible solid-state electrochemical supercapacitors. Nano Energy 8:274–290

    Article  Google Scholar 

  8. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  9. Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53

    Article  Google Scholar 

  10. Li WY, Shao JJ, Liu Q, Liu XJ, Zhou XY, Hu JQ (2015) Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors. Electrochim Acta 157:108–114

    Article  Google Scholar 

  11. Wu ZS, Ren WC, Wang DW, Li F, Liu B, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  Google Scholar 

  12. Wang DW, Fang HT, Li F, Chen ZG, Zhong QS, Lu GQ, Cheng HM (2008) Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Adv Funct Mater 18:3787–3793

    Article  Google Scholar 

  13. Qu QT, Shi Y, Li LL, Guo WL, Wu YP, Zhang HP, Guan SY, Holze R (2009) V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 Solution. Electrochem Commun 11:1325–1328

    Article  Google Scholar 

  14. Oh I, Kim M, Kim J (2015) Controlling hydrazine reduction to deposit iron oxides on oxidized activated carbon for supercapacitor application. Energy 86:292–299

    Article  Google Scholar 

  15. Maiti S, Pramanik A, Mahanty S (2016) Electrochemical energy storage in Mn2O3 porous nanobars derived from morphology-conserved transformation of benzenetricarboxylate-bridged metal-organic framework. CrystEngComm 18:450–461

    Article  Google Scholar 

  16. Liu YB, Lin LY, Huang YY, Tu CC (2016) Investigation of the electroactive capability for the supercapacitor electrode with cobalt oxide rhombus nanopillar and nanobrush arrays. J Power Sources 315:23–34

    Article  Google Scholar 

  17. Navale ST, Mali VV, Pawar SA, Mane RS, Naushad M, Stadler FJ, Patil VB (2015) Electrochemical supercapacitor development based on electrodeposited nickel oxide film. RSC Adv 5:51961–51965

    Article  Google Scholar 

  18. Zhao YF, Zhang XJ, He J, Zhang L, Xia MR, Gao FM (2015) Morphology controlled synthesis of nickel cobalt oxide for supercapacitor application with enhanced cycling stability. Electrochim Acta 174:51–56

    Article  Google Scholar 

  19. Xiao W, Chen JS, Lou XW (2011) Synthesis of octahedral Mn3O4 crystals and their derived Mn3O4–MnO2 heterostructures via oriented growth. CrystEngComm 13:5685–5687

    Article  Google Scholar 

  20. Song MK, Cheng S, Chen H, Qin W, Nam KW, Xu S, Yang XQ, Bongiorno A, Lee J, Bai J, Tyson TA, Cho J, Liu M (2012) Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage. Nano Lett 12:3483–3490

    Article  Google Scholar 

  21. Kolathodi MS, Rao SNH, Natarajan TS, Singh G (2016) Beaded manganese oxide (Mn2O3) nanofibers: preparation and application for capacitive energy storage. J Mater Chem A 4:7883–7891

    Article  Google Scholar 

  22. Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 136:13925–13931

    Article  Google Scholar 

  23. Zanchetta E, Malfatti L, Ricco R, Styles MJ, Lisi F, Coghlan CJ, Doonan CJ, Hill AJ, Brusatin G, Falcaro P (2015) ZnO as an efficient nucleating agent for rapid, room temperature synthesis and patterning of Zn-based metal–organic frameworks. Chem Mater 27:690–699

    Article  Google Scholar 

  24. Zhang J, Wang LJ, Xu LL, Ge XM, Zhao X, Lai M, Liu ZL, Chen W (2015) Porous cobalt-manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li-O2 batteries. Nanoscale 7:720–726

    Article  Google Scholar 

  25. Nguyen T, Boudard M, Carmezim MJ, Montemor MF (2016) Hydrogen bubbling-induced micro/nano porous MnO2 films prepared by electrodeposition for pseudocapacitor electrodes. Electrochim Acta 202:166–174

    Article  Google Scholar 

  26. Li SL, Xu Q (2013) Metal–organic frameworks as platforms for clean energy. Energy Environ Sci 6:1656–1683

    Article  Google Scholar 

  27. Wang L, Han YZ, Feng X, Zhou JW, Qi PF, Wang B (2016) Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev 307:361–381

    Article  Google Scholar 

  28. Salunkhe RR, Tang J, Kamachi Y, Nakato T, Kim JH, Yamauchi Y (2015) Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 9:6288–6296

    Article  Google Scholar 

  29. Song YH, Li X, Wei CT, Fu JY, Xu FG, Tan HL, Tang J, Wang L (2015) A green strategy to prepare metal oxide superstructure from metal-organic frameworks. Sci Rep 5:8401

    Article  Google Scholar 

  30. Song YH, Li X, Sun LL, Wang L (2015) Metal/metal oxide nanostructures derived from metal–organic frameworks. RSC Adv 5:7267–7279

    Article  Google Scholar 

  31. Xu W, Li TT, Zheng YQ (2016) Porous Co3O4 nanoparticles derived from a Co(II)- cyclohexanehexacarboxylate metal–organic framework and used in a supercapacitor with good cycling stability. RSC Adv 6:86447–86454

    Article  Google Scholar 

  32. Zhang L, Li W, Zhang J, Li ZJ, Qin YY, Cheng JK, Yao YG (2008) Antiferromagnetic interactions in melamine-bridged trinuclear cobalt complex. Inorg Chem Commun 11:279–282

    Article  Google Scholar 

  33. Lee SH, Lee H, Cho MS, Namb JD, Lee Y (2013) Morphology and composition control of manganese oxide by the pulse reverse electrodeposition technique for high performance supercapacitors. J Mater Chem A 1:14606–14611

    Article  Google Scholar 

  34. Gao L, Zhang LL, Jia SY, Liu XC, Wang YH, Xing SX (2016) Facile route to achieve hierarchical hollow MnO2 nanostructures. Electrochim Acta 203:59–65

    Article  Google Scholar 

  35. Zhao YC, Misch J, Wang CA (2016) Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials. J Mater Sci Mater Electron 27:5533–5542

    Article  Google Scholar 

  36. Ren XG, An JW, Yan SH, Gao LZ, Xu SM, Wang XM, Wei GQ (2016) Assembly of Mn3O4/carbon black composite and its supercapacitor application. Int J Electrochem Sci 11:5080–5089

    Article  Google Scholar 

  37. Lee E, Lee T, Kim BS (2014) Electrospun nanofiber of hybrid manganese oxides for supercapacitor: relevance to mixed inorganic interfaces. J Power Sources 255:335–340

    Article  Google Scholar 

  38. Xuan LY, Chen LY, Yang QQ, Chen WF, Hou XH, Jiang YQ, Zhang Q, Yuan Y (2015) Engineering 2D multi-layer graphene-like Co3O4 thin sheets with vertically aligned nanosheets as basic building units for advanced pseudocapacitor materials. J Mater Chem A 3:17525–17533

    Article  Google Scholar 

  39. Chen SL, Liu F, Xiang QJ, Feng XH, Qiu GH (2013) Synthesis of Mn2O3 microstructures and their energy storage ability studies. Electrochim Acta 106:360–371

    Article  Google Scholar 

  40. Tao T, Chen Y, Chen YH, Fox DS, Zhang HZ, Zhou MQ, Raveggi M, Barlow AJ, Glushenkov AM (2017) Two-dimensional metal oxide nanoflower- like architectures: a general growth method and their applications in energy storage and as model materials for nanofabrication. ChemPlusChem 82:295–302

    Article  Google Scholar 

  41. Zhang F, Zhang XG (2012) Mn2O3 sub-micron powder: preparation via complex thermolysis route and electrochemical properties. Chin J Inorg Chem 28:2626–2632

    Google Scholar 

  42. Liang JY, Bu LT, Cao WG, Chen T, Cao YC (2016) Facile fabrication of coaxial-cable like Mn2O3 nanofiber by electrospinning: application as electrode material for supercapacitor. J Taiwan Inst Chem Eng 65:584–590

    Article  Google Scholar 

  43. Pang H, Li XR, Li B, Zhang YZ, Zhao QX, Lai WY, Huang W (2016) Porous dimanganese trioxide microflowers derived from microcoordinations for flexible solid-state asymmetric supercapacitors. Nanoscale 8:11689–11697

    Article  Google Scholar 

  44. Fan YF, Zhang XD, Liu YS, Cai Q, Zhang JM (2013) One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors. Mater Lett 95:153–156

    Article  Google Scholar 

  45. Bhagwan J, Sahoo A, Yadav KL, Sharma Y (2015) Porous, One dimensional and high aspect ratio Mn3O4 nanofibers: fabrication and optimization for enhanced supercapacitive properties. Electrochim Acta 174:992–1001

    Article  Google Scholar 

  46. Yang JH, Yang XF, Zhong YL, Ying JY (2015) Porous MnO/Mn3O4 nanocomposites for electrochemical energy storage. Nano Energy 13:702–708

    Article  Google Scholar 

Download references

Acknowledgement

This project was sponsored by K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Qing Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1020 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LD., Zheng, YQ. & Zhu, HL. Manganese oxides derived from Mn(II)-based metal–organic framework as supercapacitor electrode materials. J Mater Sci 53, 1346–1355 (2018). https://doi.org/10.1007/s10853-017-1575-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1575-7

Keywords

Navigation