Skip to main content
Log in

Thermal transport properties of graphyne nanotube and carbon nanotube hybrid structure: nonequilibrium molecular dynamics simulations

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

By performing nonequilibrium molecular dynamics (NEMD) simulations, a GNT/CNT hybrid structure made by graphyne nanotube (GNT) and carbon nanotube (CNT) has been designed and investigated. The influences of length, percentage of GNT, and tensile strain on the thermal transport properties of GNT/CNT hybrid structure are examined. It reveals that the thermal conductivity of hybrid structure increases linearly with the length. Due to the different phonon properties between GNT and CNT, the thermal conductivity of hybrid structure appears as a sharp drop in comparison with the pure CNT. By controlling the percentage of GNT, this hybrid structure exhibits tunable thermal transport behaviors. Moreover, a dramatically thermal rectification phenomenon is observed when applying a tensile strain along the heat flow direction. As the strain rises from 0.0 to 0.06, the rectification factor increases from 2.62 to 12.94%; however, the thermal conductivities reduce by 23.9 and 16.3% for the heat flow direction from GNT to CNT and the opposite direction, respectively. These findings would provide significant insights into the potential applications of GNT/CNT hybrid material in nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  2. Fujii M, Zhang X, Xie H et al (2005) Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett 95:065502

    Article  Google Scholar 

  3. Pop E, Mann D, Wang Q, Goodson KE, Dai HJ (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100

    Article  Google Scholar 

  4. Marconnet AM, Panzer MA, Goodson KE (2013) Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev Mod Phys 85:1295–1326

    Article  Google Scholar 

  5. Bi K, Chen Y, Yang J, Wang Y, Chen M (2006) Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes. Phys Lett A 350:150–153

    Article  Google Scholar 

  6. Michael CHW, Jang-Yu H (2009) Thermal conductivity of carbon nanotubes with quantum correction via heat capacity. Nanotechnology 20:145401

    Article  Google Scholar 

  7. Thomas JA, Iutzi RM, McGaughey AJH (2010) Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Phys Rev B 81:045413

    Article  Google Scholar 

  8. Chien S-K, Yang Y-T, Chen Co-K (2011) The effects of vacancy defects and nitrogen doping on the thermal conductivity of armchair (10, 10) single-wall carbon nanotubes. Solid State Commun 151:1004–1008

    Article  Google Scholar 

  9. Pan RQ, Xu ZJ, Zhu ZY, Wang ZX (2007) Thermal conductivity of functionalized single-wall carbon nanotubes. Nanotechnology 18:285704

    Article  Google Scholar 

  10. Wu G, Li B (2007) Thermal rectification in carbon nanotube intramolecular junctions: molecular dynamics calculations. Physical Review B 76:085424

    Article  Google Scholar 

  11. Ni X, Zhang G, Li B (2011) Thermal conductivity and thermal rectification in unzipped carbon nanotubes. J Phys Condens Matter 23:215301

    Article  Google Scholar 

  12. Varshney V, Roy AK, Froudakis G, Farmer BL (2011) Molecular dynamics simulations of thermal transport in porous nanotube network structures. Nanoscale 3:3679–3684

    Article  Google Scholar 

  13. Loh GC, Teo EHT, Tay BK (2012) Tuning the Kapitza resistance in pillared-graphene nanostructures. J Appl Phys 111:013515

    Article  Google Scholar 

  14. Xu L, Wei N, Zheng Y, Fan Z, Wang H-Q, Zheng J-C (2012) Graphene-nanotube 3D networks: intriguing thermal and mechanical properties. J Mater Chem 22:1435–1444

    Article  Google Scholar 

  15. Zhao H, Wei D, Zhou L, Shi H, Zhou X (2015) Thermal conductivities of graphyne nanotubes from atomistic simulations. Comput Mater Sci 106:69–75

    Article  Google Scholar 

  16. Hu M, Jing Y, Zhang X (2015) Low thermal conductivity of graphyne nanotubes from molecular dynamics study. Phys Rev B 91:155408

    Article  Google Scholar 

  17. Chen X (2015) Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms. Phys Chem Chem Phys 17:29340–29343

    Article  Google Scholar 

  18. Wang YS, Yuan PF, Li M, Jiang WF, Sun Q, Jia Y (2013) Calcium-decorated graphyne nanotubes as promising hydrogen storage media: a first-principles study. J Solid State Chem 197:323–328

    Article  Google Scholar 

  19. Gong J, Tang Y, Yang H, Yang P (2015) Theoretical investigations of sp-sp2 hybridized capped graphyne nanotubes. Chem Eng Sci 134:217–221

    Article  Google Scholar 

  20. Coluci VR, Galvao DS, Baughman RH (2004) Theoretical investigation of electromechanical effects fro graphyne carbon nanotubes. J Chem Phys 121:3228–3237

    Article  Google Scholar 

  21. Zhang J, Cui Y, Wang S (2017) Lattice thermal conductivity of δ-graphyne—a molecular dynamics study. Phys E Low dimens Syst Nanostruct 90:116–122

    Article  Google Scholar 

  22. Zhan H, Zhang Y, Bell JM, Mai Y-W, Gu Y (2014) Structure-mediated thermal transport of monolayer graphene allotropes nanoribbons. Carbon 77:416–423

    Article  Google Scholar 

  23. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  24. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  Google Scholar 

  25. Liu Y, Hu C, Huang J, Sumpter BG, Qiao R (2015) Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. J Chem Phys 142:244703

    Article  Google Scholar 

  26. Wang S, Yang B, Zhang S, Yuan J, Si Y, Chen H (2014) Mechanical properties and failure mechanisms of graphene under a central load. ChemPhysChem 15:2749–2755

    Article  Google Scholar 

  27. Yang B, Wang S, Guo Y et al (2014) Strength and failure behavior of a graphene sheet containing bi-grain-boundaries. RSC Adv 4:54677–54683

    Article  Google Scholar 

  28. Liu Y, Huang J, Yang B, Sumpter BG, Qiao R (2014) Duality of the interfacial thermal conductance in graphene-based nanocomposites. Carbon 75:169–177

    Article  Google Scholar 

  29. He L, Guo S, Lei J, Sha Z, Liu Z (2014) The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets—a molecular dynamics study. Carbon 75:124–132

    Article  Google Scholar 

  30. Wang S, Si Y, Yuan J, Yang B, Chen H (2016) Tunable thermal transport and mechanical properties of graphyne heterojunctions. Phys Chem Chem Phys 18:24210–24218

    Article  Google Scholar 

  31. Lei G, Cheng H, Liu H, Rao W (2017) Thermal rectification in asymmetric graphyne nanoribbons: a nonequilibrium molecular dynamics study. Mater Lett 189:101–103

    Article  Google Scholar 

  32. Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9:2730–2735

    Article  Google Scholar 

  33. Liu B, Baimova JA, Reddy CD et al (2014) Interface thermal conductance and rectification in hybrid graphene/silicene monolayer. Carbon 79:236–244

    Article  Google Scholar 

  34. Bagri A, Kim S-P, Ruoff RS, Shenoy VB (2011) Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett 11:3917–3921

    Article  Google Scholar 

  35. Zhou Y, Anglin B, Strachan A (2007) Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics. J Chem Phys 127:184702

    Article  Google Scholar 

  36. Turney JE, McGaughey AJH, Amon CH (2009) Assessing the applicability of quantum corrections to classical thermal conductivity predictions. Phys Rev B 79:224305

    Article  Google Scholar 

  37. Xu W, Zhang G, Li B (2014) Interfacial thermal resistance and thermal rectification between suspended and encased single layer graphene. J Appl Phys 116:134303

    Article  Google Scholar 

  38. Rajabpour A, Allaei SV, Kowsary F (2011) Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: a nonequilibrium molecular dynamics study. Appl Phys Lett 99:051917

    Article  Google Scholar 

  39. Ning W, Lanqing X, Hui-Qiong W, Jin-Cheng Z (2011) Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 22:105705

    Article  Google Scholar 

  40. Xu Z, Buehler MJ (2009) Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology 20:185701

    Article  Google Scholar 

  41. Ren C, Zhang W, Xu Z, Zhu Z, Huai P (2010) Thermal conductivity of single-walled carbon nanotubes under axial stress. J Phys Chem C 114:5786–5791

    Article  Google Scholar 

  42. Hu M, Zhang X, Poulikakos D (2013) Anomalous thermal response of silicene to uniaxial stretching. Phys Rev B 87:195417

    Article  Google Scholar 

  43. Pei Q, Zhang Y, Sha Z, Shenoy VB (2012) Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene. Appl Phys Lett 100:101901

    Article  Google Scholar 

  44. Basinski ZS, Duesberry MS, Taylor R (1971) Influence of shear stress on screw dislocations in a model sodium lattice. Can J Phys 49:2160–2180

    Article  Google Scholar 

  45. Pei QX, Zhang YW, Shenoy VB (2010) Mechanical properties of methyl functionalized graphene: a molecular dynamics study. Nanotechnology 21:115709

    Article  Google Scholar 

  46. Yang P, Li X, Zhao Y, Yang H, Wang S (2013) Effect of triangular vacancy defect on thermal conductivity and thermal rectification in graphene nanoribbons. Phys Lett A 377:2141–2146

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (No. 51476150) and Key Laboratory of Low-grade Energy Utilization Technologies and Systems Foundation of Ministry of Education (No. LLEUTS-201611) and Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, G., Liu, H. Thermal transport properties of graphyne nanotube and carbon nanotube hybrid structure: nonequilibrium molecular dynamics simulations. J Mater Sci 53, 1310–1317 (2018). https://doi.org/10.1007/s10853-017-1548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1548-x

Keywords

Navigation