Skip to main content

Advertisement

Log in

Skeleton networks of graphene wrapped double-layered polypyrrole/polyaniline nanotubes for supercapacitor applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

PPy/PANI double-layer nanotubes anchored reduced graphene oxide (rGO) nanosheets with three-dimensional architecture (3DGP) have been obtained for supercapacitors applications. The freestanding electrode yields specific capacitance (542 F g−1 at current density of 1 A/g) and excellent cycle stability (92.1% capacitance retention after 2000 cycles in a three-electrode cell configuration). The further assembled symmetric supercapacitor device exhibits a high energy density of 20.8 W h kg−1 at a power density of 250 W kg−1 and good cycle stability (capacitance loss of 7% up to 2000 cycles). The exceptional electrochemical performance of 3DGP can be ascribed to the unique structure and the synergistic effects of the components: (1) Integrating the highly capacitance matrix PPy/PANI coaxial nanotubes hybrid in rGO to enhance the reversible faradic reactions can boost the utilization rate of the electrode materials and circumventing the predicament of pseudo materials. (2) The desirable ππ interactions between highly conductive rGO films and polymer chains construct a high-performance network, which facilitates rapid transport of the electrolyte ions in the electrode. (3) The as-prepared electrode materials fabricated into electrodes directly decrease the “dead weight,” for the addition of binder and conductive agents can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672

    Article  Google Scholar 

  2. Huang P, Lethien C, Pinaud S, Brousse K, Laloo R, Turq V, Respaud M, Demortière A, Daffos B, Taberna PL, Chaudret B, Gogotsi Y, Simon P (2016) On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351:691–695

    Article  Google Scholar 

  3. Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@ polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085

    Article  Google Scholar 

  4. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

    Article  Google Scholar 

  5. Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro-and mesopores. ACS Nano 7:6899–6905

    Article  Google Scholar 

  6. Yu L, Zhang G, Yuan C, Lou XWD (2013) Hierarchical NiCo2O4@ MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49:137–139

    Article  Google Scholar 

  7. Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243

    Article  Google Scholar 

  8. Lei W, He P, Zhang S, Dong F, Ma Y (2014) One-step triple-phase interfacial synthesis of polyaniline-coated polypyrrole composite and its application as electrode materials for supercapacitors. J Power Sources 266:347–352

    Article  Google Scholar 

  9. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater. doi:10.1002/aenm.201300816

    Google Scholar 

  10. Shi Y, Yu G (2016) Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem Mater 28:2466–2477

    Article  Google Scholar 

  11. Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438

    Article  Google Scholar 

  12. Liu Y, Zhang Y, Ma G, Wang Z, Liu K, Liu H (2013) Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim Acta 88:519–525

    Article  Google Scholar 

  13. Cao J, Wang Y, Chen J, Li X, Walsh FC, Ouyang JH, Jia D, Zhou Y (2015) Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. J Mater Chem A 3:14445–14457

    Article  Google Scholar 

  14. Liang B, Qin Z, Zhao J, Zhang Y, Zhou Z, Lu Y (2014) Controlled synthesis, core–shell structures and electrochemical properties of polyaniline/polypyrrole composite nanofibers. J Mater Chem A 2:2129–2135

    Article  Google Scholar 

  15. Wang K, Li L, Liu Y, Zhang C, Liu T (2016) Constructing a “Pizza-Like” MoS2/polypyrrole/polyaniline ternary architecture with high energy density and superior cycling stability for supercapacitors. Adv Mater Interfaces. doi:10.1002/admi.201600665

    Google Scholar 

  16. Xie Y, Wang D, Ji J (2016) Preparation and supercapacitor performance of freestanding polypyrrole/polyaniline coaxial nanoarrays. Energy Technol 4:714–721

    Article  Google Scholar 

  17. Zhao W, Wang S, Wang C, Wu S, Xu W, Zou M, Ouyang A, Cao A, Li Y (2016) Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability. Nanoscale 8:626–633

    Article  Google Scholar 

  18. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Materiomics 2:37–54

    Article  Google Scholar 

  19. Zhu C, Liu T, Qian F, Han TYJ, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y (2016) Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 16:3448–3456

    Article  Google Scholar 

  20. Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S (2014) Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater 26:4855–4862

    Article  Google Scholar 

  21. Hu Y, Cheng H, Zhao F, Chen N, Jiang L, Feng Z, Qu L (2014) All-in-one graphene fiber supercapacitor. Nanoscale 6:6448–6451

    Article  Google Scholar 

  22. Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, Gomes VG (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8

    Article  Google Scholar 

  23. Sun S, Wang P, Wang S, Wu Q, Fang S (2015) Fabrication of MnO2/nanoporous 3D graphene for supercapacitor electrodes. Mater Lett 145:141–144

    Article  Google Scholar 

  24. Kashani H, Chen L, Ito Y, Han J, Hirata A, Chen M (2016) Bicontinuous nanotubular graphene–polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy 19:391–400

    Article  Google Scholar 

  25. Dou P, Jiang A, Fan X, Ma D, Xu X (2015) A coral-inspired nanoscale design of Sn–Cu/PANi/GO hybrid anode materials for high performance lithium-ion batteries. RSC Adv 5:21525–21531

    Article  Google Scholar 

  26. Kota M, Yu X, Yeon SH, Cheong HW, Park HS (2016) Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. J Power Sources 303:372–378

    Article  Google Scholar 

  27. Wang ZL, He XJ, Ye SH, Tong YX, Li GR (2013) Design of polypyrrole/polyaniline double-layer nanotube arrays for electrochemical energy storage. ACS Appl Mater Interfaces 6:642–647

    Article  Google Scholar 

  28. Pan TJ, Zuo XW, Wang T, Hu J, Chen ZD, Ren YJ (2016) Electrodeposited conductive polypyrrole/polyaniline composite film for the corrosion protection of copper bipolar plates in proton exchange membrane fuel cells. J Power Sources 302:180–188

    Article  Google Scholar 

  29. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  Google Scholar 

  30. Ye S, Feng J (2014) Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors. ACS Appl Mater Interfaces 6:9671–9679

    Article  Google Scholar 

  31. Zhang J, Yu Y, Liu L, Wu Y (2013) Graphene–hollow PPy sphere 3D-nanoarchitecture with enhanced electrochemical performance. Nanoscale 5:3052–3057

    Article  Google Scholar 

  32. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10:4025–4031

    Article  Google Scholar 

  33. He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2012) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182

    Article  Google Scholar 

  34. Salunkhe RR, Kamachi Y, Torad NL, Hwang SM, Sun Z, Dou SX, Kim JH, Yamauchi Y (2014) Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J Mater Chem A 2:19848–19854

    Article  Google Scholar 

  35. Wang Q, Yan J, Wei T, Feng J, Ren Y, Fan Z, Zhang M, Jing X (2013) Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 60:481–487

    Article  Google Scholar 

  36. Yu X, Lu B, Xu Z (2014) Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4-3D graphene hybrid electrodes. Adv Mater 26:1044–1051

    Article  Google Scholar 

  37. Wang H, Holt CM, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5:605–617

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (Nos. 51143009 and 51273145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 650 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, W., Cheng, J. et al. Skeleton networks of graphene wrapped double-layered polypyrrole/polyaniline nanotubes for supercapacitor applications. J Mater Sci 53, 787–798 (2018). https://doi.org/10.1007/s10853-017-1543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1543-2

Keywords

Navigation