Fluoroalkyl-silane-modified 3D graphene foam with improved Joule-heating effects and high hydrophobicity-derived anti-icing properties

Abstract

A fluoroalkyl-silane (FS)-modified three-dimensional (3D) graphene foam (GF) composite (FS-GF) with a hierarchical porous microstructure was fabricated via a nickel foam template chemical vapor deposition and followed modification. The 3D GF, as an electrically conductive framework and hydrophobic porous substrate, was grafted with FS to further improve the hydrophobicity due to its long non-polar molecular chains and numerous fluoric/silicon functional groups. Porous FS-GF with high electrical conductivity (~650 S/m) is functionalized as a Joule-heating mesh for airflow, which synchronously demonstrates rapid heating rates, high conversion efficiencies, and uniform temperature distributions. Moreover, FS-GF exhibits self-cleaning and anti-icing properties that are superior to metallic and inorganic coatings. The outstanding performances of FS-GF suggest the potential for functionalizing 3D graphene composites using hierarchical structures at the multi-scale and chemical modifications of functional molecular groups.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1

    Zhang Q, Xu X, Li H, Xiong G, Hu H, Fisher TS (2015) Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 93:659–670

    Article  Google Scholar 

  2. 2

    Bae JJ, Lim SC, Han GH, Jo YW, Doung DL, Kim ES (2012) Heat dissipation of transparent graphene defoggers. Adv Funct Mater 22(22):4819–4826

    Article  Google Scholar 

  3. 3

    Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH Jr, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132(40):14067–14069

    Article  Google Scholar 

  4. 4

    Nguyen DD, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energ Environ Sci 5(7):7908–7912

    Article  Google Scholar 

  5. 5

    Yavari F, Chen Z, Thomas AV, Ren W, Cheng HM, Koratkar N (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1(166):1–5

    Google Scholar 

  6. 6

    Ray AK, Sahu RK, Rajinikanth V, Bapari H, Ghosh M, Paul P (2012) Preparation and characterization of graphene and Ni-decorated graphene using flower petals as the precursor material. Carbon 50(11):4123–4129

    Article  Google Scholar 

  7. 7

    Zhu C, Han TYJ, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6(6962):1–8

    Google Scholar 

  8. 8

    Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN (2015) Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4):4636–4648

    Article  Google Scholar 

  9. 9

    Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotech 10(3):277–283

    Article  Google Scholar 

  10. 10

    Zhang Q, Hao M, Xu X, Xiong G, Li H, Fisher TS (2017) Flyweight 3D graphene scaffolds with microinterface barrier-derived tunable thermal insulation and flame retardancy. ACS Appl Mater Interfaces 9(16):14232–14241

    Article  Google Scholar 

  11. 11

    Mallakpour S, Abdolmaleki A, Mahmoudian M, Ensafi AA, Abarghoui MM (2017) Synergetic effect of synthesized sulfonated polyaniline/quaternized graphene and its application as a high-performance supercapacitor electrode. J Mater Sci 52(16):9683–9695. doi:10.1007/s10853-017-1118-2

    Article  Google Scholar 

  12. 12

    Khaleed AA, Bello A, Dangbegnon JK, Madito MJ, Ugbo FU, Akande AA, Dhonge BP, Barzegar F, Momodu DY, Mwakikunga BW, Manyala N (2017) Gas sensing study of hydrothermal reflux synthesized NiO/graphene foam electrode for CO sensing. J Mater Sci 52(4):2035–2044. doi:10.1007/s10853-016-0491-6

    Article  Google Scholar 

  13. 13

    Xu X, Li H, Zhang Q, Hu H, Zhao Z, Li J, Li J, Qiao Y, Gogotsi Y (2015) Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano 9(4):3969–3977

    Article  Google Scholar 

  14. 14

    Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI, Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48(19):6707–6712. doi:10.1007/s10853-013-7471-x

    Article  Google Scholar 

  15. 15

    Worsley MA, Olson TY, Lee JR, Willey TM, Nielsen MH, Roberts SK, Pauzauskie PG, Biener J, Satcher GH Jr, Baumann TF (2011) High surface area, sp2-cross-linked three-dimensional graphene monoliths. J Phys Chem Lett 2(8):921–925

    Article  Google Scholar 

  16. 16

    Meng F, Zhang X, Xu B, Yue S, Guo H, Luo Y (2011) Alkali-treated graphene oxide as a solid base catalyst: synthesis and electrochemical capacitance of graphene/carbon composite aerogels. J Mater Chem 21(46):18537–18539

    Article  Google Scholar 

  17. 17

    Estevez L, Kelarakis A, Gong Q, Da’as EH, Giannelis EP (2011) Multifunctional graphene/platinum/nafion hybrids via ice templating. J Am Chem Soc 133(16):6122–6125

    Article  Google Scholar 

  18. 18

    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  Google Scholar 

  19. 19

    Yu M, Wang A, Wang Y, Li C, Shi G (2014) An alumina stabilized ZnO–graphene anode for lithium ion batteries via atomic layer deposition. Nanoscale 6(19):11419–11424

    Article  Google Scholar 

  20. 20

    Kim KH, Oh Y, Islam MF (2012) Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat Nanotech 7(9):562–566

    Article  Google Scholar 

  21. 21

    Li M, Wang Y, Liu Q, Li Q, Cheng Y, Zheng Y, Xi T, Wei S (2013) In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B 1(4):475–484

    Article  Google Scholar 

  22. 22

    Desai RC, Kapral R (2009) Dynamics of self-organized and self-assembled structures. Cambridge University Press, Cambridge

    Google Scholar 

  23. 23

    Menzel R, Barg S, Miranda M, Anthony DB, Bawaked SM, Mokhtar M (2015) Joule heating characteristics of emulsion-templated graphene aerogels. Adv Funct Mater 25(1):28–35

    Article  Google Scholar 

  24. 24

    Yao Y, Fu KK, Yan C, Dai J, Chen Y, Wang Y (2016) Three-dimensional printable high-temperature and high-rate heaters. ACS Nano 10(5):5272–5279

    Article  Google Scholar 

  25. 25

    Zhang Q, Xu X, Lin D, Chen W, Xiong G, Yu Y, Fisher TS, Li H (2016) Hyperbolically patterned 3D graphene metamaterial with negative poisson’s ratio and superelasticity. Adv Mater 28:2229–2237

    Article  Google Scholar 

  26. 26

    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  Google Scholar 

  27. 27

    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Article  Google Scholar 

  28. 28

    Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):1–4

    Article  Google Scholar 

  29. 29

    Brostow W, Hagg Lobland HE (2017) Materials: introduction and applications, Ch. 15. John Wiley & Sons, New York

    Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate financial support from Key Laboratory of Mechanics on Disaster and Environment in Western China (Lanzhou University) (Grant No. lzujbky-2017-kb03), the Fundamental Research Funds for the Central Universities (PI: Dr. Qiangqiang Zhang, Grant No. lzujbky-2017-k17), and the National Natural Science Foundation of China (PI: Dr. Boyun Huang, Grant No. 51021063; PI: Dr. Qiangqiang Zhang, Grant: No. 51702142). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qiangqiang Zhang or Pingge He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, B., Yu, Y. et al. Fluoroalkyl-silane-modified 3D graphene foam with improved Joule-heating effects and high hydrophobicity-derived anti-icing properties. J Mater Sci 53, 528–537 (2018). https://doi.org/10.1007/s10853-017-1536-1

Download citation

Keywords

  • Graphene Foam (GF)
  • Anti-icing Performance
  • Fluoroalkylsilane (FS)
  • Cassie Baxter State
  • Excellent Hydrophobicity