Magnetoresistance of graphite intercalated with cobalt

Abstract

The results of experimental studies of magnetoresistance, resistivity and Hall coefficient of graphite intercalated with cobalt are presented. A highly oriented pyrolitic graphite was chosen as source for intercalation. A two-step method of synthesis was used for graphite intercalation compound (GIC) obtaining. The electro- and magnetoresistance and Hall coefficient were measured in temperature range of (1.6–293) K and magnetic field up to 5 T. The effects of asymmetric and linear relatively to magnetic field magnetoresistance have been revealed for GIC. It was shown that the linear magnetoresistance is not saturated with increasing magnetic field up to 5 T and is not dependent on temperature. The effect of linear magnetoresistance in GIC was explained within Abrikosov model of quantum magnetoresistance.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1

    Xu R, Husmann A, Rosenbaum TF, Saboungi ML, Enderby JE, Littlewood PB (1997) Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390:57–60

    Article  Google Scholar 

  2. 2

    Lee M, Rosenbaum T, Saboungi M, Schnyders H (2002) Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Phys Rev Lett 88:066602–066604

    Article  Google Scholar 

  3. 3

    Kreutzbruck M, Lembke G, Mogwitz B, Korte C, Janek J (2009) Linear magnetoresistance in Ag2 + δSe thin films. Phys Rev B 79:035204–035205

    Article  Google Scholar 

  4. 4

    Branforda WR, Husmann A, Solin SA, Clowes SK, Zhang T, Bugoslavsky YV, Cohen LF (2005) Geometric manipulation of the high-field linear magnetoresistance in InSb epilayers on GaAs (001). Appl Phys Lett 86:202116-1–202116-3. doi:10.1063/1.1923755

    Google Scholar 

  5. 5

    Johnson H, Bennett S, Barua R, Lewis L, Heiman D (2010) Universal properties of linear magnetoresis-tance in strongly disordered MnAs-GaAs composite semi-conductors. Phys Rev B 82(6):085202–085204

    Article  Google Scholar 

  6. 6

    Bhoi D, Mandal P, Choudhury P, Pandya S, Ganesan V (2011) Quantum magnetoresistance of the PrFeAsO oxypnictide. Appl Phys Lett 98(17):172105-1–172105-3

    Article  Google Scholar 

  7. 7

    Wang XL, Du Y, Dou SX, Zhang C (2012) Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys Rev Lett 108(26):266806-1–266806-5

    Google Scholar 

  8. 8

    Yan Y, Wang X, Yu DP, Liao ZM (2013) Large magnetoresistance in high mobility topological insulator Bi2Se3. Appl Phys Lett 103(2):033106-1–033106-4

    Article  Google Scholar 

  9. 9

    Singh S, Gopal RK, Sarkar J, Mitra C (2015) Quantum and classical contributions to linear magnetoresistance in topological insulator thin films. In International Conference on Condensed Matter and Applied Physics (ICC 2015) AIP Conf. Proc. 1728 pp. 020557-1–020557-4

  10. 10

    Hu J, Parish MM, Rosenbaum TF (2007) Nonsaturating magnetoresistance of inhomogeneous conductors: comparison of experiment and simulation. Phys Rev B 75(21):214203-1–214203-9

    Article  Google Scholar 

  11. 11

    Abrikosov A (1998) Quantum magnetoresistance. Phys Rev B 58(5):2788–2794

    Article  Google Scholar 

  12. 12

    Friedman AL, Tedesco JL, Campbell PM, Culbertson JC, Aifer E, Perkins FK, Myers-Ward RL, Hite JK et al (2010) Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett 10:3962–3965

    Article  Google Scholar 

  13. 13

    Singh RS, Wang X, Chen W, Wee ATS (2012) Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene: evidence for two-dimensional magnetotransport. Appl Phys Lett 101(18):183105-1–183105-5

    Google Scholar 

  14. 14

    Gryglas-Borysiewicz M, Jouault B, Tworzydło J, Lewinska S, Strupinski W, Baranowski JM (2009) Transport properties of disordered graphene layers. Acta Phys Polonica A 116(5):838–840

    Article  Google Scholar 

  15. 15

    Kisslinger F, Ott C, Heide C, Kampert E, Butz B, Spiecker E, Shallcross S, Weber HB (2015) Linear magnetoresistance in mosaic-like bilayer graphene. Nat Phys Lett 11:650–653

    Article  Google Scholar 

  16. 16

    Zhang X, Xue QZ, Zhu DD (2004) Positive and negative linear magnetoresistance of graphite. Phys Lett A 320:471–477

    Article  Google Scholar 

  17. 17

    Chacon-Torres JC, Wirtz L, Pichler T (2014) Raman spectroscopy of graphite intercalation compounds: charge transfer, strain, and electron-phonon coupling in graphene layers. Phys St Sol B 251(11):2337–2355

    Article  Google Scholar 

  18. 18

    Shuvayev A, Helmer B, Lyubeznova T, Mirmilstein A, Kvacheva L, Novikov Yu, Volpin M (1989) EXAFS study of graphite intercalation compounds with transition metals (Fe, Ni). J Phys 50:1145–1151

    Article  Google Scholar 

  19. 19

    Touzain F, N’Guessan G, Bonnin D, Kaiser P, Chouteau G (1996) Electrochemically reduced cobalt-graphite intercalation compound. Synth Met 79(3):241–251

    Article  Google Scholar 

  20. 20

    Korolovych VF, Nedyak SP, Moroz KO, Prylutskyy YuI, Scharff P, Ritter U (2013) Compressibility of water containing single-walled carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct 21(1):24–30

    Article  Google Scholar 

  21. 21

    Korolovych VF, Bulavin LA, Prylutskyy YuI, Khrapatiy SV, Tsierkezos N, Ritter U (2014) Influence of single-walled carbon nanotubes on the thermal expansion of water. Int J Thermophys 35(1):19–31

    Article  Google Scholar 

  22. 22

    Buchelnikov AS, Voronin DP, Kostjukov VV, Deryabina TA, Khrapatiy SV, Prylutskyy YuI, Ritter U, Evstigneev MP (2014) Complexation of aromatic drugs with single-walled carbon nanotubes. J Nanopart Res 16(7):2472-1–2472-14

    Article  Google Scholar 

  23. 23

    Radchenko NV, Prylutskyy YI, Shapoval LM, Sagach VF, Davydovska TL, Dmitrenko OV, Stepanenko LG, Pobigailo LS, Schütze C, Ritter U (2013) Impact of single-walled carbon nanotubes on the medullary neurons in spontaneously hypertensive rats. Mat-Wiss U Werkstofftech 44(2–3):171–175

    Article  Google Scholar 

  24. 24

    Minchenko OH, Tsymbal DO, Minchenko DO, Prylutska SV, Cherepanov VV, Prylutskyy YI, Tsierkezos NG (2016) Single-walled carbon nanotubes affect the expression of the CCND2 gene in human U87 glioma cells. Mat-Wiss U Werkstofftech 47(2–3):180–188

    Article  Google Scholar 

  25. 25

    Shapoval LM, Prylutska SV, Kotsyuruba AV, Dmitrenko OV, Prylutskyy YuI, Sagach VF, Ritter U (2016) Single-walled carbon nanotubes modulate cardiovascular control in rats. Mat-Wiss U Werkstofftech 47(2–3):208–215

    Article  Google Scholar 

  26. 26

    Mykhailenko OV, Prylutskyy YuI, Matsuy DV, Strzhemechny YM, Le Normand F, Ritter U, Scharff P (2010) Structure and thermal stability of Co- and Fe-intercalated double graphene layers. J Comput Theor Nanosci 7(6):996–999

    Article  Google Scholar 

  27. 27

    Radchenko TM, Tatarenko VA, Sagalianov IYu, Prylutskyy YuI, Szroeder P, Biniak S (2016) On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene. Carbon 101:37–48

    Article  Google Scholar 

  28. 28

    Mykhailenko OV, Prylutskyy YuI, Кomarov IV, Strungar AV (2017) Structure and thermal stability of Co- and Fe-intercalated double silicene layers. Nanoscale Res Lett 12:110-1–110-5

    Article  Google Scholar 

  29. 29

    Matsui D, Prylutskyy Yu, Matzui L, Zakharenko N, Normand F, Derory A (2010) Magnetic properties of cobalt-carbon nanocomposites. Phys St Sol C 7:1264–1268

    Google Scholar 

  30. 30

    Matzui L, Vovchenko L, Dvorkina I (1995) Transport properties of acceptor graphite intercalated compounds. Ukr J Phys 40(1–2):107–111

    Google Scholar 

  31. 31

    Sugihara K, Matsubara K, Suzuki S, Suzuki M (1998) Theory of the a- and c- axis resistivity and magnetoresistance in MoCl5 graphite intercalation compounds. J Phys Soc Jap 67(12):4169–4177

    Article  Google Scholar 

  32. 32

    Matsubara K, Sugihara K, Suzuki I, Suzuki M (1999) A- and c-axis resistivity and magnetoresistance in MoCl5 graphite intercalation compounds. J Phys Cond Matt 11:3149–3160

    Article  Google Scholar 

  33. 33

    Matsui D, Ovsiyenko I, Lazarenko O, Prylutskyy Yu, Matsui V (2011) Abnormal electron transport in graphite intercalation compounds with iron. Mol Cryst Liq Cryst 535(1):64–73

    Article  Google Scholar 

  34. 34

    Piraux L, Bayot V, Dresselhaus M (1992) Influence of magnetic fields on the two-dimensional electron transport in weakly desordered fluorine-intercalated graphite fibers. Phys Rev B 45(24):14315–14320

    Article  Google Scholar 

  35. 35

    Matzui L, Vovchenko L, Dvorkina I (1994) Low-temperature thermopower in disordered graphite intercalated with SbCl5. Low Temp Phys 20(5):463–468

    Google Scholar 

  36. 36

    Matsui D, Prylutskyy Yu, Matzuy L, Normand F, Ritter U, Scharff P (2008) Transverse and longitudinal magnetoresistance in graphite intercalated by Co. Physica E 40(7):2630–2634

    Article  Google Scholar 

  37. 37

    Grechnev GE, Lyogenkaya AA, Kolesnichenko YA, Prylutskyy YI, Hayn R (2014) Electronic structure and magnetic properties of graphite intercalated with 3d-metals. Low Temp Phys 40(5):580–584

    Article  Google Scholar 

  38. 38

    Tkachuk V, Ovsiyenko I, Matzui L, Len T, Prylutskyy Yu, Brusylovets O, Berkutov I, Mirzoiev I et al (2016) Asymmetric magnetoresistance in the graphite intercalation compounds with cobalt. Mol Cryst Liq Cryst 639(1):137–150

    Article  Google Scholar 

  39. 39

    Segal O, Shaya O, Karpovski M, Gerber A (2009) Asymmetric field dependence of magnetoresistance in magnetic films. Phys Rev B 79(14):144434–144436

    Article  Google Scholar 

  40. 40

    Cheng X, Urazhdin S, Tchernyshyov O, Chien C, Nikitenko V, Shapiro A, Shull R (2004) Antisymmetric magnetoresistance in magnetic multilayers with perpendicular anisotropy. Phys Rev Lett 94:017203–017204

    Article  Google Scholar 

  41. 41

    Xiang G, Holleitner A, Sheu B, Mendoza F, Maksimov O, Stone M, Schiffer P, Awschalom D, Samarth N (2005) Magnetoresistance anomalies in (Ga, Mn)As epilayers with perpendicular magnetic anisotropy. Phys Rev B 71(24):241307-1–241307-4

    Article  Google Scholar 

  42. 42

    Wang X-L, Dou SX, Zhang C (2010) Zero-gap materials for future spintronics, electronics and optics. NPG Asia Mater 2(1):31–38

    Article  Google Scholar 

  43. 43

    Abrikosov AA (2000) Quantum linear magnetoresistance. Europhys Lett 49(6):789–793

    Article  Google Scholar 

  44. 44

    Abrikosov A (1999) Quantum magnetoresistance of layered semimetals. Phys Rev B 60(6):4231–4234

    Article  Google Scholar 

  45. 45

    Blinowski J, Rigaux C, Nguyen H (1980) Band structure model and dynamical dielectric function in lowest stages of graphite acceptor compounds. J Phys 41(1):47–58

    Article  Google Scholar 

  46. 46

    Blinowski J, Rigaux C (1980) Electronic properties of graphite intercalation compounds. J Phys 41(7):667–674

    Article  Google Scholar 

  47. 47

    Hau NH, Blinowski J, Rigaux C (1981) Intervalence transitions in graphite acceptor compounds. Synth Met 3:99–105

    Article  Google Scholar 

  48. 48

    Matzui LYu, Ovsienko IV, Vovchenko LL (2000) Phonon drag in GICs based on disordered graphite. Mol Cryst Liq Cryst 340(1):319–324

    Article  Google Scholar 

  49. 49

    Buryakov T, Romanenko A, Anikeeva O, Okotrub A, Yudanov N, Kotosonov A (2007) Electrophysical properties of bromine-intercalated low-dimensional carbon structures. Low Temp Phys 33(2):268–271

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

IB, YP, LM and UR conceived and designed the experiments. IM, VT, TL and OP performed the experiments. YP, LM and IO analyzed the data. IB, IO, TL, IO contributed in the drafting and revision of the manuscript. LM, YP, IO and UR supervised the work and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Uwe Ritter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ovsiienko, I., Matzui, L., Berkutov, I. et al. Magnetoresistance of graphite intercalated with cobalt. J Mater Sci 53, 716–726 (2018). https://doi.org/10.1007/s10853-017-1511-x

Download citation

Keywords

  • Graphite Intercalation Compounds (GIC)
  • Linear Magnetoresistance
  • Highly Oriented Pyrolytic Graphite (HOPG)
  • Metallic Sandwich
  • Temperature Dependent Hall Coefficient