Skip to main content

Robocasting of dense yttria-stabilized zirconia structures

Abstract

Advanced ceramic materials with complex design have become inseparable from the current engineering applications. Due to the limitation of traditional ceramic processing, ceramic additive manufacturing (AM) which allows high degree of fabrication freedom has gained significant research interest. Among these AM techniques, low-cost robocasting technique is often considered to fabricate complex ceramic components. In this work, aqueous ceramic suspension comprising of commercial nano-sized yttria-stabilized zirconia (YSZ) powder has been developed for robocasting purpose. Both fully and partially stabilized YSZ green bodies with complex morphologies were successfully printed in ambient conditions using relatively low-solid-content ceramic suspensions (<38 vol%). The sintered structures were able to retain the original morphologies with >94% of the theoretical density despite its high linear shrinkage (up to 33%). The microstructure analysis indicated that dense fully and partially stabilized YSZ with grain size as small as 1.40 ± 0.53 and 0.38 ± 0.10 μm can be obtained, respectively. The sintered partially stabilized YSZ solid and porous mesh samples (porosity of macro-pores >45%) exhibited hardness up to 13.29 GPa and flexural strengths up to 242.8 ± 11.4 and 57.3 ± 5.2 MPa, respectively. The aqueous-based ceramic suspension was also demonstrated to be suitable for the fabrication of large YSZ parts with good repeatability.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. 1

    Belmonte M (2006) Advanced ceramic materials for high temperature applications. Adv Eng Mater 8(8):693–703

    Article  Google Scholar 

  2. 2

    Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24(3):289–298

    Article  Google Scholar 

  3. 3

    Gautam C, Joyner J, Gautam A, Rao J, Vajtai R (2016) Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Trans 45(48):19194–19215

    Article  Google Scholar 

  4. 4

    Park J-S, Kim H, Kim I-D (2014) Overview of electroceramic materials for oxide semiconductor thin film transistors. J Electroceram 32(2):117–140

    Article  Google Scholar 

  5. 5

    Schlordt T, Schwanke S, Keppner F, Fey T, Travitzky N, Greil P (2013) Robocasting of alumina hollow filament lattice structures. J Eur Ceram Soc 33(15–16):3243–3248

    Article  Google Scholar 

  6. 6

    Manicone PF, Rossi Iommetti P, Raffaelli L (2007) An overview of zirconia ceramics: basic properties and clinical applications. J Dent 35(11):819–826

    Article  Google Scholar 

  7. 7

    Zhao S, Xiao W, Rahaman MN, O’Brien D, Seitz-Sampson JW, Sonny Bal B (2017) Robocasting of silicon nitride with controllable shape and architecture for biomedical applications. Int J Appl Ceram Technol 14(2):117–127

    Article  Google Scholar 

  8. 8

    Cai K, Román-Manso B, Smay JE, Zhou J, Osendi MI, Belmonte M, Miranzo P (2012) Geometrically complex silicon carbide structures fabricated by robocasting. J Am Ceram Soc 95(8):2660–2666

    Article  Google Scholar 

  9. 9

    Chen Z, Song X, Lei L, Chen X, Fei C, Chiu CT, Qian X, Ma T, Yang Y, Shung K, Chen Y, Zhou Q (2016) 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy 27:78–86

    Article  Google Scholar 

  10. 10

    Tuttle BA, Smay JE, Cesarano J, Voigt JA, Scofield TW, Olson WR, Lewis JA (2001) Robocast Pb(Zr0.95Ti0.05)O3 ceramic monoliths and composites. J Am Ceram Soc 84(4):872–874

    Article  Google Scholar 

  11. 11

    Jakus AE, Taylor SL, Geisendorfer NR, Dunand DC, Shah RN (2015) Metallic architectures from 3D-printed powder-based liquid inks. Adv Func Mater 25(45):6985–6995

    Article  Google Scholar 

  12. 12

    Wei X, Nagarajan RS, Peng E, Xue J, Wang J, Ding J (2016) Fabrication of YBa2Cu3O7−x (YBCO) superconductor bulk structures by extrusion freeforming. Ceram Int 42(14):15836–15842

    Article  Google Scholar 

  13. 13

    Tsampas MN, Sapountzi FM, Vernoux P (2015) Applications of yttria stabilized zirconia (YSZ) in catalysis. Catal Sci Technol 5(11):4884–4900

    Article  Google Scholar 

  14. 14

    Devi PS, Sharma AD, Maiti HS (2004) Solid oxide fuel cell materials: a review. Trans Indian Ceram Soc 63(2):75–98

    Article  Google Scholar 

  15. 15

    Porter DL, Evans AG, Heuer AH (1979) Transformation-toughening in partially-stabilized zirconia (PSZ). Acta Metall 27(10):1649–1654

    Article  Google Scholar 

  16. 16

    Durá OJ, López de la Torre MA, Vázquez L, Chaboy J, Boada R, Rivera-Calzada A, Santamaria J, Leon C (2010) Ionic conductivity of nanocrystalline yttria-stabilized zirconia: grain boundary and size effects. Phys Rev B 81(18):184301

    Article  Google Scholar 

  17. 17

    Shanti NO, Hovis DB, Seitz ME, Montgomery JK, Baskin DM, Faber KT (2009) Ceramic laminates by gelcasting. Int J Appl Ceram Technol 6(5):593–606

    Article  Google Scholar 

  18. 18

    Hotza D, Greil P (1995) Review: aqueous tape casting of ceramic powders. Mater Sci Eng A 202(1):206–217

    Article  Google Scholar 

  19. 19

    Mohd Foudzi F, Muhamad N, Bakar Sulong A, Zakaria H (2013) Yttria stabilized zirconia formed by micro ceramic injection molding: rheological properties and debinding effects on the sintered part. Ceram Int 39(3):2665–2674

    Article  Google Scholar 

  20. 20

    Lewis JA, Smay JE, Stuecker J, Cesarano J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599–3609

    Article  Google Scholar 

  21. 21

    Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, Schlordt T, Greil P (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16(6):729–754

    Article  Google Scholar 

  22. 22

    Zocca A, Colombo P, Gomes CM, Günster J (2015) Additive manufacturing of ceramics: issues, potentialities, and opportunities. J Am Ceram Soc 98(7):1983–2001

    Article  Google Scholar 

  23. 23

    Qian B, Shen Z (2013) Laser sintering of ceramics. J Asian Ceram Soc 1(4):315–321

    Article  Google Scholar 

  24. 24

    Manogharan G, Kioko M, Linkous C (2015) Binder jetting: a novel solid oxide fuel-cell fabrication process and evaluation. JOM 67(3):660–667

    Article  Google Scholar 

  25. 25

    Halloran JW (2016) Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annu Rev Mater Res 46(1):19–40

    Article  Google Scholar 

  26. 26

    Allahverdi M, Danforth SC, Jafari M, Safari A (2001) Processing of advanced electroceramic components by fused deposition technique. J Eur Ceram Soc 21(10–11):1485–1490

    Article  Google Scholar 

  27. 27

    Lu X, Lee Y, Yang S, Hao Y, Evans JRG, Parini CG (2009) Fine lattice structures fabricated by extrusion freeforming: process variables. J Mater Process Technol 209(10):4654–4661

    Article  Google Scholar 

  28. 28

    Maazouz Y, Montufar EB, Guillem-Marti J, Fleps I, Ohman C, Persson C, Ginebra MP (2014) Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J Mater Chem B 2(33):5378–5386

    Article  Google Scholar 

  29. 29

    Mason MS, Huang T, Landers RG, Leu MC, Hilmas GE (2009) Aqueous-based extrusion of high solids loading ceramic pastes: process modeling and control. J Mater Process Technol 209(6):2946–2957

    Article  Google Scholar 

  30. 30

    Scheithauer U, Schwarzer E, Richter H-J, Moritz T (2015) Thermoplastic 3D printing—an additive manufacturing method for producing dense ceramics. Int J Appl Ceram Technol 12(1):26–31

    Article  Google Scholar 

  31. 31

    Vaidyanathan R, Walish J, Lombardi JL, Kasichainula S, Calvert P, Cooper KC (2000) The extrusion freeforming of functional ceramic prototypes. JOM 52(12):34–37

    Article  Google Scholar 

  32. 32

    Leu MC, Deuser BK, Tang L, Landers RG, Hilmas GE, Watts JL (2012) Freeze-form extrusion fabrication of functionally graded materials. CIRP Ann Manuf Technol 61(1):223–226

    Article  Google Scholar 

  33. 33

    de Hazan Y, Thänert M, Trunec M, Misak J (2012) Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks. J Eur Ceram Soc 32(6):1187–1198

    Article  Google Scholar 

  34. 34

    Faes M, Valkenaers H, Vogeler F, Vleugels J, Ferraris E (2015) Extrusion-based 3D printing of ceramic components. Procedia CIRP 28:76–81

    Article  Google Scholar 

  35. 35

    Feilden E, Blanca EG-T, Giuliani F, Saiz E, Vandeperre L (2016) Robocasting of structural ceramic parts with hydrogel inks. J Eur Ceram Soc 36(10):2525–2533

    Article  Google Scholar 

  36. 36

    Lu X, Lee Y, Yang S, Hao Y, Ubic R, Evans JRG, Parini CG (2008) Fabrication of electromagnetic crystals by extrusion freeforming. Metamaterials 2(1):36–44

    Article  Google Scholar 

  37. 37

    Lu X, Lee Y, Yang S, Hao Y, Evans JRG, Parini CG (2010) Solvent-based paste extrusion solid freeforming. J Eur Ceram Soc 30(1):1–10

    Article  Google Scholar 

  38. 38

    Michna S, Wu W, Lewis JA (2005) Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials 26(28):5632–5639

    Article  Google Scholar 

  39. 39

    Smay JE, Cesarano J, Lewis JA (2002) Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18(14):5429–5437

    Article  Google Scholar 

  40. 40

    Garbe U, Randall T, Hughes C (2011) The new neutron radiography/tomography/imaging station DINGO at OPAL. Nucl Instrum Methods Phys Res Sect A 651(1):42–46

    Article  Google Scholar 

  41. 41

    Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83(10):2341–2359

    Article  Google Scholar 

  42. 42

    Moreno R (2012) Colloidal processing of ceramics and composites. Adv Appl Ceram 111(5-6):246–253

    Article  Google Scholar 

  43. 43

    Hidber PC, Graule TJ, Gauckler LJ (1996) Citric acid—a dispersant for aqueous alumina suspensions. J Am Ceram Soc 79(7):1857–1867

    Article  Google Scholar 

  44. 44

    Çınar S, Akinc M (2014) Ascorbic acid as a dispersant for concentrated alumina nanopowder suspensions. J Eur Ceram Soc 34(8):1997–2004

    Article  Google Scholar 

  45. 45

    Stuecker JN, Cesarano Iii J, Hirschfeld DA (2003) Control of the viscous behavior of highly concentrated mullite suspensions for robocasting. J Mater Process Technol 142(2):318–325

    Article  Google Scholar 

  46. 46

    Tekeli S (2007) The solid solubility limit of Al2O3 and its effect on densification and microstructural evolution in cubic-zirconia used as an electrolyte for solid oxide fuel cell. Mater Des 28(2):713–716

    Article  Google Scholar 

  47. 47

    Tekeli S, Demir U (2005) Colloidal processing, sintering and static grain growth behaviour of alumina-doped cubic zirconia. Ceram Int 31(7):973–980

    Article  Google Scholar 

  48. 48

    Houmard M, Fu Q, Genet M, Saiz E, Tomsia AP (2013) On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J Biomed Mater Res B Appl Biomater 101(7):1233–1242

    Article  Google Scholar 

  49. 49

    Michorczyk P, Hedrzak E, Wegrzyniak A (2016) Preparation of monolithic catalysts using 3D printed templates for oxidative coupling of methane. J Mater Chem A 4(48):18753–18756

    Article  Google Scholar 

  50. 50

    Saint Gobain. ZirPro CY3Z-P Technical Data Sheet. http://www.zirpro.com/zirconia-beads-powders/yttria-stabilized-zirconia

Download references

Acknowledgements

The authors would like to thank Saint Gobain ZirPro for providing the zirconia powders. This project is financially supported by Saint Gobain (R-284-000-140-597), NUS Strategic Research Fund R-261-509-001-646 and R-261-509-001-733 and NRF NRF-CRP16-2015-01 (R-284-000-159-281).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Ding.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, E., Wei, X., Garbe, U. et al. Robocasting of dense yttria-stabilized zirconia structures. J Mater Sci 53, 247–273 (2018). https://doi.org/10.1007/s10853-017-1491-x

Download citation

Keywords

  • Robocasting
  • Ceramic Suspensions
  • High Linear Shrinkage
  • Greater Body
  • Traditional Ceramic Processing