Journal of Materials Science

, Volume 52, Issue 24, pp 13779–13789 | Cite as

A facile co-precipitation synthesis of heterostructured ZrO2|ZnO nanoparticles as efficient photocatalysts for wastewater treatment

  • Alberto Quintana
  • Ainhoa Altube
  • Eva García-Lecina
  • Santiago Suriñach
  • Maria Dolors Baró
  • Jordi Sort
  • Eva Pellicer
  • Miguel Guerrero
Chemical routes to materials


ZrO2-decorated ZnO (ZrO2|ZnO) nanoparticles (NPs) have been synthesized by a facile co-precipitation method in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The ZrO2 amount in the NPs has been varied from 1.0, 2.0, 4.9, to 9.3% by weight. The resulting NPs are heterostructured and consist of a crystalline ZnO core (wurtzite phase) surrounded by an amorphous ZrO2 layer. X-ray diffraction analyses support this observation. The NPs show a narrow size distribution and are slightly elongated. Compared to pure ZnO NPs, the hybrid ZrO2|ZnO ones show enhanced photocatalytic activity toward the degradation of Rhodamine B under UV–Vis light. Such enhancement has been partly attributed to the increased amount of oxygen vacancies when ZrO2 is incorporated into the NPs, as shown by X-ray photoelectron spectroscopy analyses.



Financial support by the Spanish Government (Projects MAT2014-57960-C3-2-R and MAT2014-57960-C3-1-R with associated FEDER), Generalitat de Catalunya (2014-SGR-1015) and Basque Government (ELKARTEK, FN KK-2015/00101) is acknowledged. E.P. is grateful to MINECO for the “Ramon y Cajal” contract (RYC-2012-10839).

Supplementary material

10853_2017_1488_MOESM1_ESM.docx (3 mb)
Supplementary material 1 (DOCX 3030 kb)


  1. 1.
    Pera-Titus M, García-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B 47:219–256CrossRefGoogle Scholar
  2. 2.
    Grojec A (2015) Progress on sanitation and drinking water–2015 update and MDG assessment. WHO Library Cataloguing-in-Publication Data, GenevaGoogle Scholar
  3. 3.
    Kenny JF, Barber NL, Hutson SS, Linsey KS, Lovelace JK, Maupin MA (2009) Estimated use of water in the United States in 2005. US Geol Survey Circ 1344:1–52Google Scholar
  4. 4.
    Crini G (2003) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085CrossRefGoogle Scholar
  5. 5.
    Mushtaq F, Guerrero M, Sakar MS, Hoop M, Lindo AM, Sort J, Chen X, Nelson BJ, Pellicer E, Pané S (2015) Magnetically driven Bi2O3/BiOCl-based hybrid microrobots for photocatalytic water remediation. J Mater Chem A 3:23670–23675CrossRefGoogle Scholar
  6. 6.
    Zhu C, Lu B, Su Q, Xie E, Lan W (2012) A simple method for the preparation of hollow ZnO nanospheres for use as a high performance photocatalyst. Nanoscale 4:3060–3064CrossRefGoogle Scholar
  7. 7.
    Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448CrossRefGoogle Scholar
  8. 8.
    Tian C, Zhang Q, Wu A, Jiang M, Liang Z, Jiang B, Fu H (2012) Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem Commun 48:2858–2860CrossRefGoogle Scholar
  9. 9.
    Chen X, Wu Z, Liu D, Gao Z (2017) Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res Lett 12:143CrossRefGoogle Scholar
  10. 10.
    Sangari NU, Velusamy P (2016) Photocatalytic decoloration efficiencies of ZnO and TiO2: a comparative study. J Env Sci Pollut Res 2:42–45Google Scholar
  11. 11.
    Mondal K, Sharma A (2014) Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials–a mini-review. In: M Ashok, JR Bellare (eds) nanoscience & technology for mankind Chapter 5, The National Academy of Sciences India (NASI), pp 36–72Google Scholar
  12. 12.
    Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ, Morkoç HA (2005) Comprehensive review of ZnO materials and devices. J Appl Phys, 98:041301-1–041301-103Google Scholar
  13. 13.
    Huang M, Yan Y, Feng W, Weng S, Zheng Z, Fu X, Liu P (2014) Controllable tuning various ratios of ZnO polar facets by crystal seed-assisted growth and their photocatalytic activity. Cryst Growth Des 14:2179–2186CrossRefGoogle Scholar
  14. 14.
    Jang ES, Won J-H, Hwang S-J, Choy J-H (2006) Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv Mater 18:3309–3312CrossRefGoogle Scholar
  15. 15.
    Yan F, Wang Y, Zhang J, Lin Z, Zheng J, Huang F (2014) Schottky or ohmic metal-semiconductor contact: influence on photocatalytic efficiency of Ag/ZnO and Pt/ZnO model systems. Chemsuschem 7:101–104CrossRefGoogle Scholar
  16. 16.
    Subash B, Krishnakumar B, Swaminathan M, Shanthi M (2013) Highly efficient, solar active, and reusable photocatalyst: Zr-loaded Ag-ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir 29:939–949CrossRefGoogle Scholar
  17. 17.
    Weng B, Yang M-Q, Zhang N, Xu Y-J (2014) Towards the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J Mater Chem A 2:9380–9389CrossRefGoogle Scholar
  18. 18.
    Das SC, Green RJ, Podder J, Regier TZ, Chang GS, Moewes A (2013) Band gap tuning in ZnO through Ni doping via spray pyrolysis. J Phys Chem C 117:12745–12753CrossRefGoogle Scholar
  19. 19.
    Yi S, Cui J, Li S, Zhang L, Wang D, Lin Y (2014) Enhanced visible-light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties. Appl Surf Sci 319:230–236CrossRefGoogle Scholar
  20. 20.
    Kim S, Kim M, Kim T, Baik H, Lee K (2013) Evolution of space-efficient and facet-specific ZnO 3-D nanostructures and their application in photocatalysis. Cryst Eng Comm 15:2601–2607CrossRefGoogle Scholar
  21. 21.
    Al-Sabahi J, Bora T, Al-Abri M, Dutta J (2016) Controlled defects of zinc oxide nanorods for efficient visible light photocatalytic degradation of phenol. Materials 9Google Scholar
  22. 22.
    Cho S, Jang J-W, Lee JS, Lee K-H (2010) Exposed crystal face controlled synthesis of 3D ZnO superstructures. Langmuir 26:14255–14262CrossRefGoogle Scholar
  23. 23.
    Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties. Nanoscale 5:8326–8339CrossRefGoogle Scholar
  24. 24.
    Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms. Catal Implic Biomass Convers ACS Catal 3:2456–2473Google Scholar
  25. 25.
    Bansal P, Chaudhary GR, Mehta SK (2015) Comparative study of catalytic activity of ZrO2 nanoparticles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes. Chem Eng J 280:475–485CrossRefGoogle Scholar
  26. 26.
    Ciesielczyk F, Szczekocka W, Siwińska-Stefańska K, Piasecki A, Paukszta D, Jesionowski T (2017) Evaluation of the photocatalytic ability of a Sol-Gel-derived MgO–ZrO2 oxide material. Open Chem 15:7–18CrossRefGoogle Scholar
  27. 27.
    Vignesh K, Suganthi A, Min B-K, Kang M (2015) Fabrication of meso-porous BiOI sensitized zirconia nanoparticles with enhanced photocatalytic activity under simulated solar light irradiation. Appl Surf Sci 324:652–661CrossRefGoogle Scholar
  28. 28.
    Ibrahim MM (2015) Photocatalytic activity of nanostructured ZnO–ZrO2 binary oxide using fluorometric method. Spectrochim Acta Mol Biomol Spectrosc 145:487–492CrossRefGoogle Scholar
  29. 29.
    Crisci AJ, Dou H, Prasomsri T, Román-Leshkov Y (2014) Cascade reactions for the continuous and selective production of isobutene from bioderived acetic acid over zinc-zirconia catalysts. ACS Catal 4:4196–4200CrossRefGoogle Scholar
  30. 30.
    Sherly ED, Vijaya JJ, Selvam NCS, Kennedy LJ (2014) Microwave assisted combustion synthesis of coupled ZnO–ZrO2 nanoparticles and their role in the photocatalytic degradation of 2,4-dichlorophenol. Ceram Int 40:5681–5691CrossRefGoogle Scholar
  31. 31.
    Zhang S, Hu Q, Fan G, Li F (2013) The relationship between the structure and catalytic performance Cu/ZnO/ZrO2 catalysts for hydrogenation of dimethyl 1,4-cyclohexane dicarboxylate. Catal Commun 39:96–101CrossRefGoogle Scholar
  32. 32.
    Huang C, Chen S, Fei X, Liu D, Zhang Y (2015) Catalytic hydrogenation of CO2 to methanol: study of synergistic effect on adsorption properties of CO2 and H2 in CuO/ZnO/ZrO2 system. Catalysts 5:1846–1861CrossRefGoogle Scholar
  33. 33.
    Matsumura Y, Ishibe H (2009) High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts. Appl Catal B 91:524–532CrossRefGoogle Scholar
  34. 34.
    Bian S-W, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size and adsorption of humic acid. Langmuir 27:6059–6068CrossRefGoogle Scholar
  35. 35.
    Beek WJE, Wienk MM, Kemerink M, Yang X, Janssen RAJ (2005) Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J Phys Chem B 109:9505–9516CrossRefGoogle Scholar
  36. 36.
    Young RA (1995) The Rietveld method; international union of crystallography. Oxford University Press, OxfordGoogle Scholar
  37. 37.
    Wan C, Lu Y, Sun Q, Li J (2014) Hydrothermal synthesis of zirconium dioxide coating on the surface of wood with improved UV resistance. Appl Surf Sci 321:38–42CrossRefGoogle Scholar
  38. 38.
    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao CNR (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74:161306–1–161306–4CrossRefGoogle Scholar
  39. 39.
    Suwanboon S, Amornpitoksuk P, Sukolrat A, Muensit N (2013) Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method. Ceram Int 39:2811–2819CrossRefGoogle Scholar
  40. 40.
    Raja K, Ramesh PS, Geetha D, Kokila T, Sathiyapriya R (2015) Synthesis of structural and optical characterization of surfactant capped ZnO nanocrystalline. Spectrochim Acta Part A 136:155–161CrossRefGoogle Scholar
  41. 41.
    Wang J, Wang Z, Huang B, Ma Y, Liu Y, Qin X, Zhang X, Dai Y (2012) Oxygen vacancies induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl Mater Interfaces 4:4024–4030CrossRefGoogle Scholar
  42. 42.
    Filho UPR, Gushikem Y, Fujiwara FY (1994) Zirconium dioxide supported on α-cellulose: synthesis and characterization. Langmuir 10:4357–4360CrossRefGoogle Scholar
  43. 43.
    Wu JM, Chen Y-R, Kao WT (2014) Ultrafine ZnO nanoparticles/nanowires synthesized on a flexible and transparent substrate: formation, water molecules, and surface defect effects. ACS Appl Mater Interfaces 6:487–494CrossRefGoogle Scholar
  44. 44.
    Rahimnejad S, He JH, Chen W, Wu K, Xu GQ (2014) Tuning the electronic and structural properties of WO3 nanocrystals by varying transition metal tungstate precursors. RSC Adv 4:62423–62429CrossRefGoogle Scholar
  45. 45.
    Samson K, Śliwa M, Socha RP, Góra-Marek K, Mucha D, Rutkowska-Zbik D, Paul J-F, Ruggiero-Mikołajczyk M, Grabowsky R, Słoczyński J (2014) Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal 4:3730–3741CrossRefGoogle Scholar
  46. 46.
    Zhai B, Huang YM (2016) A review on recent progress in ZnO based photocatalysts. Optoelectron Mater 1:22–36Google Scholar
  47. 47.
    Siwińska-Stefańska K, Zdarta J, Paukszta D, Jesionowski T (2015) The influence of addition of a catalyst and chelating agent on the properties of titanium dioxide synthesized via the Sol-gel method. J Sol-Gel Sci Technol 75:264–278CrossRefGoogle Scholar
  48. 48.
    Sharma J, Vashishtha M, Shah DO (2011) Crystallite size dependence on structural parameters and photocatalytic activity of microemulsion mediated synthesized ZnO nanoparticles annealed at different temperatures. Global J Sci Frontier Res B 14:19–32Google Scholar
  49. 49.
    Rahman QI, Ahmad M, Misra SK, Lohani M (2013) Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater Lett 91:170–174CrossRefGoogle Scholar
  50. 50.
    El Hakam SA, El-Dafrawy SM, Fawzy S, Hassan SM (2014) Structural, photocatalytic and antibacterial activity of ZnO and ZrO2 doped ZnO nanoparticles. Int J Sci Res 3:779–787Google Scholar
  51. 51.
    Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4596–1–4596–8Google Scholar
  52. 52.
    Selvam NCS, Vijaya JJ, Kennedy LJ (2012) Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures. Ind Eng Chem Res 51:16333–16345CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Departament de Física, Facultat de CiènciesUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Surface Engineering AreaIK4-CIDETECSan SebastiánSpain
  3. 3.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations