Skip to main content
Log in

Interfacial behaviour from pull-out tests of steel and aluminium fibres in unsaturated polyester matrix

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study aims at implementing an interfacial model to capture the role of interfaces in polyester-based composites reinforced by metallic fibres. A pull-out test of single aluminium and steel fibres embedded in unsaturated polyester matrix is performed. Finite element computation is performed to simulate the typical response of the pull-out test based on an interfacial model. The implemented model relies on a nonlinear relationship assumed between the interfacial shear and interfacial separation. A sensitivity analysis is conducted to reveal the effect of each parameter of the interfacial model. The identification of these parameters with respect to the experimental conditions is also attempted. The predictions show a perfect matching with the experimental trends if a two-term expression is accounted for as an interfacial response. The model outcome reveals superior interfacial performance of the aluminium/unsaturated polyester composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Mouritz AP, Gellert E, Burchill P, Challis K (2001) Compos Struct 53:21. doi:10.1016/S0263-8223(00)00175-6

    Article  Google Scholar 

  2. Bagherpour S (2012). doi:10.5772/48697

  3. Zia KM, Noreen A, Zuber M, Tabasum S, Mujahid M (2016) Int J Biol Macromol 82:1028. doi:10.1016/j.ijbiomac.2015.10.040

    Article  Google Scholar 

  4. Thiruchitrambalam M, Athijayamani A, Sathiyamurthy S, Abu Thaheer AS (2010) J Nat Fibers 7:307. doi:10.1080/15440478.2010.529299

    Article  Google Scholar 

  5. Gunes O, Lau D, Tuakta C, Buyukozturk O (2013) Constr Build Mater 49:915. doi:10.1016/j.conbuildmat.2012.10.017

    Article  Google Scholar 

  6. Avci A, Arikan H, Akdemir A (2004) Cem Concr Res 34:429. doi:10.1016/j.cemconres.2003.08.027

    Article  Google Scholar 

  7. Durai Prabhakaran RT, Andersen TL, Bech JI, Lilholt H (2016) Polym Compos 37:627. doi:10.1002/pc.23220

    Article  Google Scholar 

  8. Ferran EMD, Harris B (1970) J Compos Mater 4:62

    Article  Google Scholar 

  9. Samanci A (2012) Constr Build Mater 26:167. doi:10.1016/j.conbuildmat.2011.06.006

    Article  Google Scholar 

  10. Cooper GA, Sillwood JM (1972) J Mater Sci 7:325. doi:10.1007/Bf00555634

    Article  Google Scholar 

  11. DiFrancia C, Ward TC, Claus RO (1996) Compos Part A Appl S 27:613. doi:10.1016/1359-835x(96)00063-2

    Article  Google Scholar 

  12. Piggott MR (1987) Compos Sci Technol 30:295. doi:10.1016/0266-3538(87)90017-0

    Article  Google Scholar 

  13. Fu SY, Yue CY, Hu X, Mai YW (2000) Compos Sci Technol 60:569. doi:10.1016/S0266-3538(99)00157-8

    Article  Google Scholar 

  14. Yang QS, Qin QH, Peng XR (2003) Compos Struct 61:193. doi:10.1016/S0263-8223(03)00066-7

    Article  Google Scholar 

  15. Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A (2013) Fiber Polym 14:277. doi:10.1007/s12221-013-0277-2

    Article  Google Scholar 

  16. Beckert W, Lauke B (1997) Compos Sci Technol 57:1689

    Article  Google Scholar 

  17. Lee Y, Kang ST, Kim JK (2010) Constr Build Mater 24:2030. doi:10.1016/j.conbuildmat.2010.03.009

    Article  Google Scholar 

  18. Li CY, Mobasher B (1998) Adv Cem Based Mater 7:123. doi:10.1016/S1065-7355(97)00087-4

    Article  Google Scholar 

  19. Jia YY, Yan WY, Liu HY (2012) Comput Mater Sci 62:79. doi:10.1016/j.commatsci.2012.05.019

    Article  Google Scholar 

  20. Ramezani M, Vilches J, Neitzert T (2013) Int J Adv Struct Eng 5:24. doi:10.1186/2008-6695-5-24

    Article  Google Scholar 

  21. Banholzer B, Brameshuber W, Jung W (2005) Cem Concr Compos 27:93. doi:10.1016/j.cemconcomp.2004.01.006

    Article  Google Scholar 

  22. Rjafiallah S, Guessasma S, Lourdin D (2009) Comp Part A Appl Sci Manuf 40:130. doi:10.1016/j.compositesa.2008.10.010

    Article  Google Scholar 

  23. McMican R (2012) Reinf Plast 56:29. doi:10.1016/s0034-3617(12)70110-8

    Article  Google Scholar 

  24. Hbib M, Guessasma S, Bassir D, Benseddiq N (2011) Compos Sci Technol 71:1419. doi:10.1016/j.compscitech.2011.05.015

    Article  Google Scholar 

  25. Upadhyaya P, Kumar S (2015) Int J Adhes Adhes 60:54. doi:10.1016/j.ijadhadh.2015.03.006

    Article  Google Scholar 

  26. Kumar S, Khan MA (2016) Int J Adhes Adhes 68:317. doi:10.1016/j.ijadhadh.2016.04.010

    Article  Google Scholar 

  27. Tipireddy R, Kumar S (2017) Int J Adhes Adhes. doi:10.1016/j.ijadhadh.2017.02.010

    Google Scholar 

  28. Kundalwal SI, Kumar S (2016) Mech Mater 102:117. doi:10.1016/j.mechmat.2016.09.002

    Article  Google Scholar 

  29. Liu P, Tao W, Guo Y (2005) J Zhejiang Univ Sci 6:8. doi:10.1631/jzus.2005.AS0008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofiane Guessasma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frikha, M., Nouri, H., Guessasma, S. et al. Interfacial behaviour from pull-out tests of steel and aluminium fibres in unsaturated polyester matrix. J Mater Sci 52, 13829–13840 (2017). https://doi.org/10.1007/s10853-017-1486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1486-7

Keywords

Navigation