Skip to main content
Log in

Plastic behaviour of high-strength lightweight Al/Ti multilayered films

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, a high-strength lightweight Al/Ti multilayered film was fabricated using a magnetron sputtering method, and its deformation behaviour was studied under nanoindentation. The Al and Ti layers were approximately 70 and 50 nm, respectively, in thickness, with the total film thickness of 2.4 μm. According to the measured hardness, the specific strength of the Al/Ti multilayer film was estimated at 245 kN m/kg, higher than most reported nanostructured metallic multilayer films. After nanoindentation, the deformation behaviour of each layer was examined in detail using SEM–FIB. It shows that the two materials exhibited co-deformation behaviour when the layers were thinned to approximately 30 nm. It was also found that the co-deformation behaviour of the Al/Ti multilayers resulted in cooperative-layer-induced shear bands under nanoindentation. Further, nanoscratch-induced deformation behaviour of the Al/Ti multilayers, such as layer buckling, was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Misra A, Hirth J, Hoagland R (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824

    Article  Google Scholar 

  2. Armstrong RW, Chou YT, Fisher RM, Louat N (1966) The limiting grain size dependence of the strength of a polycrystalline aggregate. Philos Mag 14:943–951

    Article  Google Scholar 

  3. Misra A, Hirth JP, Kung H (2002) Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos Mag A 82:2935–2951

    Article  Google Scholar 

  4. Chen Y, Liu Y, Sun C, Yu K, Song M, Wang H, Zhang X (2012) Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Mater 60:6312–6321

    Article  Google Scholar 

  5. Zhu X, Liu X, Zong R, Zeng F, Pan F (2010) Microstructure and mechanical properties of nanoscale Cu/Ni multilayers. Mater Sci Eng, A 527:1243–1248

    Article  Google Scholar 

  6. Callisti M, Polcar T (2017) Combined size and texture-dependent deformation and strengthening mechanisms in Zr/Nb nano-multilayers. Acta Mater 124:247–260

    Article  Google Scholar 

  7. Li Y, Zhu X, Zhang G, Tan J, Wang W, Wu B (2010) Investigation of deformation instability of Au/Cu multilayers by indentation. Philos Mag 90:3049–3067

    Article  Google Scholar 

  8. Zhou Q, Huang P, Liu M, Wang F, Xu K, Lu T (2017) Grain and interface boundaries governed strengthening mechanisms in metallic multilayers. J Alloy Compd 698:906–912

    Article  Google Scholar 

  9. Li Y, Zhu X, Tan J, Wu B, Zhang G (2009) Two different types of shear-deformation behaviour in Au–Cu multilayers. Philos Mag Lett 89:66–74

    Article  Google Scholar 

  10. Li Y, Tan J, Zhang G (2008) Interface instability within shear bands in nanoscale Au/Cu multilayers. Scr Mater 59:1226–1229

    Article  Google Scholar 

  11. Zhang G, Liu Y, Wang W, Tan J (2006) Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl Phys Lett 88:013105.1–013105.3

    Google Scholar 

  12. Yan J, Zhu X, Zhang G, Yan C (2013) Evaluation of plastic deformation ability of Cu/Ni/W metallic multilayers. Thin Solid Films 527:227–231

    Article  Google Scholar 

  13. Phillips M, Clemens B, Nix W (2003) A model for dislocation behaviour during deformation of Al/Al3Sc (fcc/L12) metallic multilayers. Acta Mater 51:3157–3170

    Article  Google Scholar 

  14. Li X, Kreuter T, Luo XM, Schwaiger R, Zhang GP (2017) Detecting co-deformation behavior of Cu–Au nanolayered composites. Mater Res Lett 5:20–28

    Article  Google Scholar 

  15. Misra A, Hoagland RG (2007) Plastic flow stability of metallic nanolaminate composites. J Mater Sci 42(5):1765–1771. doi:10.1007/s10853-006-0895-9

    Article  Google Scholar 

  16. Bhattacharyya D, Mara NA, Dickerson P, Hoagland RG, Misra A (2010) A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al–TiN multilayered composites. Philos Mag 90(13):1711–1724

    Article  Google Scholar 

  17. Dang C, Li J, Wang Y, Yang Y, Wang Y, Chen J (2017) Influence of multi-interfacial structure on mechanical and tribological properties of TiSiN/Ag multilayer coatings. J Mater Sci 52(5):2511–2523. doi:10.1007/s10853-016-0545-9

    Article  Google Scholar 

  18. Banerjee R, Ahuja R, Fraser HL (1996) Dimensionally induced structural transformations in titanium–aluminum multilayers. Phys Rev Lett 76(20):3778–3781

    Article  Google Scholar 

  19. Bhattacharyya D, Mara NA, Dickerson P, Hoagland RG, Misra A (2011) Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater 59(10):3804–3816

    Article  Google Scholar 

  20. Verma N, Jayaram V (2012) The influence of Zr layer thickness on contact deformation and fracture in a ZrN–Zr multilayer coating. J Mater Sci 47(4):1621–1630. doi:10.1007/s10853-011-6001-y

    Article  Google Scholar 

  21. Liu Y, Chen Y, Yu KY, Wang H, Chen J, Zhang X (2013) Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers. Int J Plast 49:152–163

    Article  Google Scholar 

  22. Zhang JY, Liu Y, Chen J, Chen Y, Liu G, Zhang X, Sun J (2012) Mechanical properties of crystalline Cu/Zr and crystal-amorphous Cu/Cu–Zr multilayers. Mater Sci Eng, A 552:392–398

    Article  Google Scholar 

  23. Ahuja R, Fraser HL (1994) Structure and mechanical properties of nanolaminated Ti–Al thin films. JOM 46(10):35–39

    Article  Google Scholar 

  24. Banerjee R, Zhang XD, Dregia SA, Fraser HL (1999) Phase stability in Al/Ti multilayers. Acta Mater 47(4):1153–1161

    Article  Google Scholar 

  25. Li N, Wang H, Misra A, Wang J (2014) In situ nanoindentation study of plastic co-deformation in Al–TiN nanocomposites. Sci Rep 4:6633.1–6633.5

    Article  Google Scholar 

  26. Fu KK, Chang L, Zheng BL, Tang YH, Wang HJ (2015) On the determination of representative stress-strain relation of metallic materials using instrumented indentation. Mater Des 65:989–994

    Article  Google Scholar 

  27. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  28. Zhou X, Jiang Z, Wang H, Yu R (2008) Investigation on methods for dealing with pile-up errors in evaluating the mechanical properties of thin metal films at sub-micron scale on hard substrates by nanoindentation technique. Mater Sci Eng, A 488:318–332

    Article  Google Scholar 

  29. Korsunsky AM, McGurk MR, Bull SJ, Page TF (1998) On the hardness of coated systems. Surf Coat Technol 99:171–183

    Article  Google Scholar 

  30. Jang JI, Lance MJ, Wen S, Tsui TY, Pharr GM (2005) Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Mater 53:1759–1770

    Article  Google Scholar 

  31. Yang D, Cizek P, Hodgson P, Wen CE (2010) Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scr Mater 62:321–324

    Article  Google Scholar 

  32. Misra A, Verdier M, Lu YC, Kung H, Mitchell TE, Nastasi M, Embury JD (1998) Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites. Scr Mater 39:555–560

    Article  Google Scholar 

  33. Li YP, Zhu XF, Tan J, Wu B, Wang W, Zhang GP (2009) Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation. J Mater Res 24:728–735

    Article  Google Scholar 

  34. Baker SP, Nix WD (1994) Mechanical properties of compositionally modulated Au–Ni thin films: nanoindentation and microcantilever deflection experiments. J Mater Res 9:3131–3144

    Article  Google Scholar 

  35. Ham B, Zhang X (2011) High strength Mg/Nb nanolayer composites. Mater Sci Eng, A 528:2028–2033

    Article  Google Scholar 

  36. Wang D, Kups T, Schawohl J, Schaaf P (2012) Deformation behavior of Au/Ti multilayers under indentation. J Mater Sci: Mater Electron 23:1077–1082. doi:10.1007/s10854-011-0550-3

    Google Scholar 

  37. Li J, Chen Y, Xue S, Wang H, Zhang X (2016) Comparison of size dependent strengthening mechanisms in Ag/Fe and Ag/Ni multilayers. Acta Mater 114:154–163

    Article  Google Scholar 

  38. McKeown J, Misra A, Kung H, Hoagland RG, Nastasi M (2002) Microstructures and strength of nanoscale Cu–Ag multilayers. Scr Mater 46:593–598

    Article  Google Scholar 

  39. Bufford D, Bi Z, Jia Q, Wang H, Zhang X (2012) Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl Phys Lett 101:223112.1–223112.5

    Article  Google Scholar 

  40. Fu EG, Li N, Misra A, Hoagland RG, Wang H, Zhang X (2008) Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater Sci Eng, A 493:283–287

    Article  Google Scholar 

  41. Mara NA, Bhattacharyya D, Dickerson P, Hoagland RG, Misra A (2008) Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl Phys Lett 92(23):231901.1–231901.3

    Article  Google Scholar 

  42. Topić M, Favaro G, Bucher R (2011) Scratch resistance of platinum–vanadium single and multilayer systems. Surf Coat Technol 205(20):4784–4790

    Article  Google Scholar 

  43. Papachristos V, Panagopoulos C, Christoffersen L, Markaki A (2001) Young’s modulus, hardness and scratch adhesion of Ni–P–W multilayered alloy coatings produced by pulse plating. Thin Solid Films 396(1):174–183

    Article  Google Scholar 

  44. Huang JC, Lee JW, Li CL (2011) Nano-scratching and nano-machining in different environments on Cr2N/Cu multilayer thin films. Thin Solid Films 519(15):4992–4996

    Article  Google Scholar 

  45. Shang H, Li J, Shao T (2014) Mechanical properties and thermal stability of TiAlN/Ta multilayer film deposited by ion beam assisted deposition. Appl Surf Sci 310:317–320

    Article  Google Scholar 

  46. Roa J, Rico V, Oliva-Ramírez M, González-Elipe A, Jiménez-Piqué E (2016) Nanoindentation and scratch resistance of multilayered TiO2–SiO2 coatings with different nanocolumnar structures deposited by PV-OAD. J Phys D Appl Phys 49(13):135104.1–135104.7

    Article  Google Scholar 

  47. Khlifi K, Dhiflaoui H, Zoghlami L, Larbi A (2015) Study of mechanical behaviour, deformation, and fracture of nano-multilayer coatings during microindentation and scratch test. J Coating Technol Res 12(3):513–524

    Article  Google Scholar 

  48. Callisti M, Polcar T (2014) The role of Ni–Ti–(Cu) interlayers on the mechanical properties and nano-scratch behaviour of solid lubricant W–S–C coatings. Surf Coat Technol 254:260–269

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by funding from the Faculty of Engineering and Information Technologies, the University of Sydney, under the Faculty Research Cluster Program. The authors also acknowledge the scientific and technical input and support from the Australian Microscopy and Microanalysis Research Facility node at the University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunkun Fu or Li Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, K., Chang, L., Yang, C. et al. Plastic behaviour of high-strength lightweight Al/Ti multilayered films. J Mater Sci 52, 13956–13965 (2017). https://doi.org/10.1007/s10853-017-1478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1478-7

Keywords

Navigation